【題目】已知函數(shù), .

(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時,判斷方程在區(qū)間上有無實(shí)根;

(3)若時,不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1) ;(2) 內(nèi)無實(shí)數(shù)根;(3).

【解析】試題分析:(2)把m的值代入后,求出f(1),求出x=1時函數(shù)的導(dǎo)數(shù),由點(diǎn)斜式寫出曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;

(Ⅱ)代入m的值,把判斷方程f(x)=g(x)在區(qū)間(1,+∞)上有無實(shí)根轉(zhuǎn)化為判斷函數(shù)h(x)=f(x)﹣g(x)在(1,+∞)上有無零點(diǎn)問題,求導(dǎo)后利用函數(shù)的單調(diào)性即可得到答案;

(Ⅲ)把f(x)和g(x)的解析式代入不等式,整理變形后把參數(shù)m分離出來,x∈(1,e]時,不等式f(x)﹣g(x)2恒成立,轉(zhuǎn)化為實(shí)數(shù)m小于一個函數(shù)在(1,e]上的最小值,然后利用導(dǎo)數(shù)分析函數(shù)在(1,e]上的最小值.

試題解析:

1時, , ,切點(diǎn)坐標(biāo)為

∴切線方程為

2時,令,

,上為增函數(shù),

,所以內(nèi)無實(shí)數(shù)根.

3恒成立,即恒成立.

,則當(dāng)時, 恒成立,

,只需小于的最小值.

,,,時, ,

上單調(diào)遞減,∴的最小值為,

的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,底面為邊長為2的菱形,平面,,,分別是,的中點(diǎn).

(1)判定是否垂直,并說明理由;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次考試后,對全班同學(xué)的數(shù)學(xué)成績進(jìn)行整理,得到表:

分?jǐn)?shù)段

人數(shù)

5

15

20

10

將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 經(jīng)過點(diǎn),且離心率為.

1)求橢圓C的方程;

2)設(shè)直線 與橢圓C交于兩個不同的點(diǎn)AB,求面積的最大值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2α4cosα=0.已知直線l的參數(shù)方程為為參數(shù)),點(diǎn)M的直角坐標(biāo)為.

1)求直線l和曲線C的普通方程;

2)設(shè)直線l與曲線C交于AB兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),若在曲線上存在點(diǎn)使得,則實(shí)數(shù)的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆安徽省蚌埠市高三上學(xué)期第一次教學(xué)質(zhì)量檢查】為監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機(jī)抽取10件零件,度量其內(nèi)徑尺寸(單位: .根據(jù)長期生產(chǎn)經(jīng)驗,可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的內(nèi)徑尺寸服從正態(tài)分布.

1)假設(shè)生產(chǎn)狀態(tài)正常,記表示某一天內(nèi)抽取的10個零件中其尺寸在之外的零件數(shù),求的數(shù)學(xué)期望;

2)某天正常工作的一條生產(chǎn)線數(shù)據(jù)記錄的莖葉圖如下圖所示:

①計算這一天平均值與標(biāo)準(zhǔn)差;

②一家公司引進(jìn)了一條這種生產(chǎn)線,為了檢查這條生產(chǎn)線是否正常,用這條生產(chǎn)線試生產(chǎn)了5個零件,度量其內(nèi)徑分別為(單位: ):85,95,103,109,119,試問此條生產(chǎn)線是否需要進(jìn)一步調(diào)試,為什么?

參考數(shù)據(jù): ,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)與短軸兩個端點(diǎn)的連線互相垂直.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn)為橢圓的上一點(diǎn),過原點(diǎn)且垂直于的直線與直線交于點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法錯誤的是( )

A. 若“”為假命題,則p,q均為假命題

B. ”是“”的充分不必要條件

C. ”的必要不充分條件是“

D. 若命題p,則命題

查看答案和解析>>

同步練習(xí)冊答案