【題目】已知函數,其中.
(1)當時,求的單調遞增區(qū)間;
(2)若在區(qū)間上的最小值為8,求的值.
【答案】(1)的單調遞增區(qū)間為或;(2).
【解析】
試題分析:(1)當時,先求導,在根據導數可求出的單調遞增區(qū)間;(2)利用導數判斷函數的單調性,從而得出函數在閉區(qū)間上的最小值,即得到參數的一個方程,分三種情況討論從而求出參數的值.
試題解析:(1)當時,由,得或.由,得或,
故函數的單調遞增區(qū)間為或.
(2)因為,,
由,得或.
當時,單調遞增;當時,單調遞減;當時,單調遞增,易知,且.
①當,即時,在上的最小值為,由,得,均不符合題意.
②當,即時,在上的最小值為,不符合題意.
③當,即時,在上的最小值可能在或上取得,而,由,得或(舍去),當時,在上單調遞減,在上的最小值為,符合題意.
綜上有.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,側面底面,,為中點,底面是直角梯形,,,,.
(1)求證:平面;
(2)求證:平面平面;
(3)設為棱上一點,,試確定的值使得二面角為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩(wěn)健型產品的收益與投資額成正比,投資股票等風險型產品的收益與投資額的算數平方根成正比,已知投資1萬元時兩類產品的收益分別是0.125萬元和0.5萬元(如圖).
(1) 分別寫出兩種產品的收益與投資的函數關系;
(2) 該家庭現有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知①正方形的對角線相等;②平行四邊形的對角線相等;③正方形是平行四邊形. ①、②、③組合成“三段論”.根據“三段論”推理出一個結論,則這個結論是( )
A. 正方形是平行四邊形 B. 平行四邊形的對角線相等
C. 正方形的對角線相等 D. 以上均不正確
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列各式中正確的有 .(把你認為正確的序號全部寫上)
(1);
(2)已知則;
(3)函數的圖象與函數的圖象關于原點對稱;
(4)函數是偶函數;
(5)函數的遞增區(qū)間為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一個不透明的箱子里放有四個質地相同的小球,四個小球標的號碼分別為1,1,2,3.現甲、乙兩位同學依次從箱子里隨機摸取一個球出來,記下號碼并放回.
(Ⅰ)求甲、乙兩位同學所摸的球號碼相同的概率;
(Ⅱ)求甲所摸的球號碼大于乙所摸的球號碼的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列說法:
①綜合法是執(zhí)因導果法;②綜合法是順推法;③分析法是執(zhí)果索因法;④分析法是間接證法;⑤反證法是逆推法.其中正確說法的個數為
A. 2 B. 3
C. 4 D. 5
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com