如圖,邊長(zhǎng)為2的正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將△、△分別沿、折起,使、兩點(diǎn)重合于點(diǎn),連接,.
(1)求證:;
(2)求二面角的余弦值.
(1)詳見(jiàn)解析;(2).
解析試題分析:(1)由,證出平面,進(jìn)而證出結(jié)論;(2)方法一:根據(jù)對(duì)稱(chēng)可判斷即為所求,由(1)可證△為直角三角形,再求出邊長(zhǎng)即可;方法二:建系,求出平面和平面的法向量,兩法向量的夾角的余弦值即為所求.
試題解析:(1)在正方形中,有, 1分
則, 2分
又 3分
∴平面 4分
而平面,∴ 5分
(2)方法一:連接交于點(diǎn),連接 6分
∵在正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),
∴,,
∴點(diǎn)為的中點(diǎn),
且 7分
∵正方形的邊長(zhǎng)為2,∴,∴ 8分
∴為二面角的平面角 9分
由(1)可得,
∴△為直角三角形 10分
∵正方形的邊長(zhǎng)為2,
∴,,
∴,,
又 11分
∴  
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直三棱柱(側(cè)棱垂直于底面的棱柱),底面中,棱,分別為的中點(diǎn).
(1)求>的值;
(2)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐P-ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2,E,F分別是AB,AP的中點(diǎn).
(1)求證:AC⊥EF;
(2)求二面角F-OE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE.
(1) 證明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的空間直角坐標(biāo)系O-xyz中,原點(diǎn)O是BC的中點(diǎn),A點(diǎn)坐標(biāo)為,D點(diǎn)在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°.
(Ⅰ)求D點(diǎn)坐標(biāo);
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB="A" A1,∠BA A1=60°.
(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C 與平面BB1C1C所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點(diǎn).沿BD將△BCD翻折到△,使得平面⊥平面ABD.
(Ⅰ)求證:平面ABD;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示的多面體是由底面為的長(zhǎng)方體被截面所截面而得到的,其中.
(Ⅰ)求的長(zhǎng);
(Ⅱ)求二面角E-FC1-C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com