不用求根公式求函數(shù)y=(x-2)(x-5)-1的零點(diǎn)的個(gè)數(shù),并比較零點(diǎn)與3的大。

答案:
解析:

  解:令y=(x-2)(x-5)-1=x2-7x+9=0.

  ∵△=(-7)2-4×1×9=13>0,∴方程x2-7x+9=0有兩根.

  ∴函數(shù)y=(x-2)(x-5)-1與x軸有兩個(gè)交點(diǎn),

  即函數(shù)y=(x-2)(x-5)-1有兩個(gè)零點(diǎn).

  ∵f(3)=(3-2)(3-5)-1=-3<0,

  函數(shù)y=(x-2)(x-5)-1的圖象為拋物線,且開口向上,

  ∴函數(shù)y=(x-2)(x-5)-1的零點(diǎn)有一個(gè)大于3,另一個(gè)小于3.


提示:

判斷方程(x-2)(x-5)-1=0的解的個(gè)數(shù).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案