某汽車公司有兩家裝配廠,生產(chǎn)甲、乙兩種不同型號的汽車,若A廠每小時可完成1輛甲型車和2輛乙型車;B廠每小時可完成3輛甲型車和1輛乙型車.今欲制造40輛甲型車和20輛乙型車,問這兩家工廠各工作幾小時,才能使所費的總工作時數(shù)最少?
【答案】分析:利用線性規(guī)劃的思想方法解決某些實際問題屬于直線方程的一個應用.本題主要考查找出約束條件與目標函數(shù),準確地描畫可行域,再利用圖形直線求得滿足題設的最優(yōu)解.
解答:解:設A廠工作xh,B廠工作yh,總工作時數(shù)為th,則t=x+y,
且x+3y≥40,2x+y≥20,x≥0,y≥0,
可行解區(qū)域如圖.
而符合問題的解為此區(qū)域內(nèi)的格子點(縱、橫坐標都是整數(shù)的點稱為格子點),
于是問題變?yōu)橐诖丝尚薪鈪^(qū)域內(nèi),
找出格子點(x,y),使t=x+y的值為最。
由圖知當直線l:y=-x+t過Q點時,
縱、橫截距t最小,但由于符合題意的解必須是格子點,
我們還必須看Q點是否是格子點.
解方程組
得Q(4,12)為格子點.
故A廠工作4h,B廠工作12h,可使所費的總工作時數(shù)最少.
點評:用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標函數(shù)的最優(yōu)解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某汽車公司有兩家裝配廠,生產(chǎn)甲、乙兩種不同型號的汽車,若A廠每小時可完成1輛甲型車和2輛乙型車;B廠每小時可完成3輛甲型車和1輛乙型車.今欲制造40輛甲型車和20輛乙型車,問這兩家工廠各工作幾小時,才能使所費的總工作時數(shù)最少?

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省揭陽一中南區(qū)學校高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

某汽車公司有兩家裝配廠,生產(chǎn)甲、乙兩種不同型號的汽車,若A廠每小時可完成1輛甲型車和2輛乙型車;B廠每小時可完成3輛甲型車和1輛乙型車.今欲制造40輛甲型車和20輛乙型車,問這兩家工廠各工作幾小時,才能使所費的總工作時數(shù)最少?

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省揭陽一中南區(qū)學校高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

某汽車公司有兩家裝配廠,生產(chǎn)甲、乙兩種不同型號的汽車,若A廠每小時可完成1輛甲型車和2輛乙型車;B廠每小時可完成3輛甲型車和1輛乙型車.今欲制造40輛甲型車和20輛乙型車,問這兩家工廠各工作幾小時,才能使所費的總工作時數(shù)最少?

查看答案和解析>>

科目:高中數(shù)學 來源:2006年高考第一輪復習數(shù)學:7.4 簡單的線性規(guī)劃(解析版) 題型:解答題

某汽車公司有兩家裝配廠,生產(chǎn)甲、乙兩種不同型號的汽車,若A廠每小時可完成1輛甲型車和2輛乙型車;B廠每小時可完成3輛甲型車和1輛乙型車.今欲制造40輛甲型車和20輛乙型車,問這兩家工廠各工作幾小時,才能使所費的總工作時數(shù)最少?

查看答案和解析>>

同步練習冊答案