對(duì)于函數(shù)f(x),g(x),φ(x)如查存在實(shí)數(shù)a,b使得φ(x)=a•f(x)+b•g(x),那么稱(chēng)φ(x)為f(x),g(x)的線(xiàn)性組合函數(shù),如對(duì)于f(x)=x+1,g(x)=x
2+2x,φ(x)=2-x
2存在a=2,b=-1使得φ(x)=2f(x)=g(x),此時(shí)φ(x)就是f(x),g(x)的線(xiàn)性組合函數(shù).
(Ⅰ)設(shè)f(x)=x
2+1,g(x)=x
2-x,φ(x)=x
2-2x+3,試判斷φ(x)是否為f(x),g(x)的線(xiàn)性組合函數(shù)?關(guān)說(shuō)明理由;
(Ⅱ)設(shè)f(x)=log
2x,g(x)=log
x,a=2,b=1,線(xiàn)性組合函數(shù)為φ(x),若不等式3φ
2(x)-2φ(x)+m<0在x∈[
,4]上有解,求實(shí)數(shù)m的取值范圍;
(Ⅲ)設(shè)f(x)=x,g(x)=
(1≤x≤9),取a=1,b>0,線(xiàn)性組合函數(shù)φ(x)使φ(x)≥b恒成立,求b的取值范圍,(可利用函數(shù)y=x+
(常數(shù)k>0)在(0,
]上是減函數(shù),在[
,+∞)上是增函數(shù))