【題目】已知數(shù)列{an}滿足an+1=qan+2q﹣2(q為常數(shù)),若a3 , a4 , a5∈{﹣5,﹣2,﹣1,7},則a1=

【答案】﹣2或﹣ 或79
【解析】解:∵an+1=qan+2q﹣2(q為常數(shù),),
∴an+1+2=q(an+2),n=1,2,…,
下面對(duì)an是否為2進(jìn)行討論:
①當(dāng)an=﹣2時(shí),顯然有a3 , a4 , a5∈{﹣5,﹣2,﹣1,7},此時(shí)a1=﹣2;
②當(dāng)an≠﹣2時(shí),{an+2}為等比數(shù)列,
又因?yàn)閍3 , a4 , a5∈{﹣5,﹣2,﹣1,7},
所以a3+2,a4+2,a5+2∈{﹣3,0,1,9},
因?yàn)閍n≠﹣2,所以an+2≠0,
從而a3+2=1,a4+2=﹣3,a5+2=9,q=﹣3或a3+2=9,a4+2=﹣3,a5+2=1,q=﹣
代入an+1=qan+2q﹣2,可得到a1=﹣ ,或a1=79;
綜上所述,a1=﹣2或﹣ 或79,
所以答案是:﹣2或﹣ 或79.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)若函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在路邊安裝路燈,路寬為,燈柱長(zhǎng)為米,燈桿長(zhǎng)為1米,且燈桿與燈柱成角,路燈采用圓錐形燈罩,其軸截面的頂角為,燈罩軸線與燈桿垂直.

⑴設(shè)燈罩軸線與路面的交點(diǎn)為,若米,求燈柱長(zhǎng);

⑵設(shè)米,若燈罩截面的兩條母線所在直線一條恰好經(jīng)過點(diǎn),另一條與地面的交點(diǎn)為(如圖2)

(圖1) (圖2)

(ⅰ)求的值;(ⅱ)求該路燈照在路面上的寬度的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)每人面試合格的概率都是 ,且面試是否合格互不影響.求:
(1)至少有1人面試合格的概率;
(2)簽約人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設(shè)命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an},{bn},{cn}滿足a1=a,b1=1,c1=3,對(duì)于任意n∈N* , 有bn+1= ,cn+1=
(1)求數(shù)列{cn﹣bn}的通項(xiàng)公式;
(2)若數(shù)列{an}和{bn+cn}都是常數(shù)項(xiàng),求實(shí)數(shù)a的值;
(3)若數(shù)列{an}是公比為a的等比數(shù)列,記數(shù)列{bn}和{cn}的前n項(xiàng)和分別為Sn和Tn , 記Mn=2Sn+1﹣Tn , 求Mn 對(duì)任意n∈N*恒成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=a(x+1)(x﹣a),若f(x)在x=a處取到極大值,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= (a∈R)
(1)若f(x)在x=0處取得極值,確定a的值,并求此時(shí)曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)在[3,+∞)上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐A﹣BPC中,AP⊥PC,AC⊥BC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形.

(1)求證:BC⊥平面APC;
(2)若BC=3,AB=10,求三棱錐B﹣MDC的體積VBMDC

查看答案和解析>>

同步練習(xí)冊(cè)答案