【題目】設函數f(x)=4x3+ ,x∈[0,1],證明:
(Ⅰ)f(x)≥1﹣2x+3x2;
(Ⅱ) <f(x)≤ .
【答案】證明:(I)令g(x)=(1+x)2(1﹣2x+3x2﹣4x3),x∈[0,1],
則g′(x)=﹣20(1+x)x3≤0,當且僅當x=0時取等號,
∴g(x)在[0,1]上單調遞減,故g(x)≤g(0)=1,
∴(1+x)2(1﹣2x+3x2﹣4x3)≤1,
∴ ≥1﹣2x+3x2,
即f(x)≥1﹣2x+3x2.
(II)由(I)知f(x)≥1﹣2x+3x2=3(x﹣ )2≥ ,
∵兩處等號不能同時成立,
∴f(x)> .
f′(x)=12x2﹣ = ,
令h(x)=6x2(1+x)3﹣1,則f(x)在[0,1]上單調遞增,
∵h(0)=﹣1,h(1)=47>0,
∴h(x)在(0,1)上存在唯一一個零點x0,
∴當0<x<x0時,f′(x)<0,當x0<x<1時,f′(x)>0,
∴f(x)在[0,1]上先減后增,
又f(0)=1,f(1)= ,
∴f(x)≤f(1)= .
綜上, f(x)≤
【解析】(I)構造函數g(x)=(1+x)2(1﹣2x+3x2﹣4x3),判斷g(x)的單調性得出最大值,化簡即可得出結論;(II)判斷f(x)的單調性即可f(x)的最大值,利用(I)得出f(x)> .
【考點精析】本題主要考查了不等式的證明的相關知識點,需要掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構造法,函數單調性法,數學歸納法等才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖.設橢圓C: (a>b>0)的離心率e= ,橢圓C上一點M到左、右兩個焦點F1、F2的距離之和是4.
(1)求橢圓C的方程;
(2)直線l:x=1與橢圓C交于P、Q兩點,P點位于第一象限,A、B是橢圓上位于直線l兩側的動點,若直線AB的斜率為 ,求四邊形APBQ面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=g(x)﹣(a﹣1)lnx,g(x)=ax+ +1﹣3a+(a﹣1)lnx.
(1)當a=1時,求函數y=f(x)在點(2,f(2))處的切線方程;
(2)若不等式g(x)≥0在x∈[1,+∞)時恒成立,求正實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,不等式 + ≥ 成立;在四邊形ABCD中,不等式 + + + ≥ 成立成立;在五邊形ABCDE中,不等式 + + + + ≥ 成立…,依此類推,在n邊形A1A2…An中,不等式不等式 ≥成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣ax(a為常數)的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為﹣1.
(1)求a的值及函數f(x)的極值;
(2)證明:當x>0時,x2<ex;
(3)證明:對任意給定的正數c,總存在x0 , 使得當x∈(x0 , +∞)時,恒有x<cex .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設公差不為0的等差數列{an}的前n項和為Sn , 若a2 , a5 , a11成等比數列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),則m+n的值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影為BC的中點,D是B1C1的中點.
(Ⅰ)證明:A1D⊥平面A1BC;
(Ⅱ)求直線A1B和平面BB1C1C所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com