【題目】下表提供了某公司技術(shù)升級(jí)后生產(chǎn)產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的成本(萬元)的幾組對(duì)照數(shù)據(jù):
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出對(duì)的回歸直線方程;
(3)已知該公司技術(shù)升級(jí)前生產(chǎn)100噸產(chǎn)品的成本為90萬元.試根據(jù)(2)求出的回歸直線方程,預(yù)測(cè)技術(shù)升級(jí)后生產(chǎn)100噸產(chǎn)品的成本比技術(shù)升級(jí)前約降低多少萬元?
(附: , ,其中為樣本平均值)
【答案】(1)見解析(2)(3)比技改前降低了噸.
【解析】試題分析:
(1)在圖中根據(jù)給出的數(shù)據(jù)描出點(diǎn)即散點(diǎn)圖;
(2)由給出的公式求得回歸方程的系數(shù),得回歸方程;
(3)利用回歸直線方程可預(yù)測(cè)技術(shù)升級(jí)后的成本,作差可得.
試題解析:
(1)把所給的四對(duì)數(shù)據(jù)寫成對(duì)應(yīng)的點(diǎn)的坐標(biāo),在坐標(biāo)系中描出來,得到散點(diǎn)圖:
(2)計(jì)算, , , ,∴回歸方程的系數(shù)為, ,所求線性回歸方程為.
(3)利用線性回歸方程計(jì)算時(shí), ,則,即比技改前降低了噸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的兩個(gè)極值點(diǎn)為,且.
(1)求的值;
(2)若在(其中上是單調(diào)函數(shù), 求的取值范圍;
(3)當(dāng)時(shí), 求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若某產(chǎn)品的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差的絕對(duì)值不超過1mm時(shí),則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機(jī)抽取5000件進(jìn)行檢測(cè),結(jié)果發(fā)現(xiàn)有50件不合格品.計(jì)算這50件不合格品的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差(單位:mm),將所得數(shù)據(jù)分組,得到如下頻率分布表:
分 組 | 頻 數(shù) | 頻 率 |
[-3,-2) | 0.10 | |
[-2,-1) | 8 | |
(1,2] | 0.50 | |
(2,3] | 10 | |
(3,4] | ||
合計(jì) | 50 | 1.00 |
(1)將上面表格中缺少的數(shù)據(jù)填充完整.
(2)估計(jì)該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的概率.
(3)現(xiàn)對(duì)該廠這種產(chǎn)品的某個(gè)批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長(zhǎng)為1的等邊三角形中,分別是,上的點(diǎn),,是的中點(diǎn),與交于點(diǎn),沿折起,得到如圖2所示的三棱錐,其中.
(1)求證:平面平面
(2)若為,上的中點(diǎn),為中點(diǎn),求異面直線與所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中, 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系, 已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).
(1)直線過且與曲線相切, 求直線的極坐標(biāo)方程;
(2)點(diǎn) 與點(diǎn)關(guān)于軸對(duì)稱, 求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓和定點(diǎn),由圓外一點(diǎn)向圓引切線,切點(diǎn)為,且滿足.
(1)求實(shí)數(shù)間滿足的等量關(guān)系;
(2)若以為圓心的圓與圓有公共點(diǎn),試求圓的半徑最小時(shí)圓的方程;
(3)當(dāng)點(diǎn)的位置發(fā)生變化時(shí),直線是否過定點(diǎn),如果是,求出定點(diǎn)坐標(biāo),如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱,且圖象上相鄰最高點(diǎn)的距離為.
⑴求的解析式;
⑵將的圖象向右平移個(gè)單位,得到的圖象若關(guān)于的方程在上有唯一解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)處下上至處有兩種路徑.一種是從沿直線步行到,另一種是先從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)后,乙從乘纜車到,在處停留后,再從勻速步行到,假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為,山路長(zhǎng)為1260,經(jīng)測(cè)量,.
(1)求索道的長(zhǎng);
(2)問:乙出發(fā)多少后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在處互相等待的時(shí)間不超過,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com