(本小題滿分12分)

已知點(diǎn)是橢圓Ea > b > 0)上一點(diǎn),F1F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1x軸.

求橢圓E的方程;

設(shè)AB是橢圓E上兩個動點(diǎn),是否存在λ,滿足(0<λ<4,且λ≠2),且M(2,1)到AB的距離為?若存在,求λ值;若不存在,說明理由.

解:(1) ∵PF1x軸,

F1( – 1,0),c = 1,F2(1,0),

|PF2|=,2a = |PF1| + |PF2| = 4,a = 2,b2 = 3,

橢圓E的方程為:;      4分

(2) 設(shè)A(x1y1)、B(x2y2),由

  (x1+1,y1-)+(x2+1,y2-)=(1,- ),

   所以x1+x2=-2,y1+y2=(2-)………①       5分

,,

兩式相減得3(x1+x2)(x1-x2)+ 4(y1+y2)(y1-y2)=0   ②

以①式代入可得AB的斜率k=    8分

設(shè)直線AB的方程為y=x+t

  與聯(lián)立消去y并整理得 x2+tx+t2-3=0,

  △=3(4-t2)>0,, x1+x2=-t=-2

  點(diǎn)M到直線AB的距離為d=,

         10分

不合題意.故這樣的不存在   12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案