16.已知點A(2,3,5),B(3,1,4),則A,B兩點間的距離為(  )
A.$\sqrt{2}$B.$\sqrt{6}$C.$3\sqrt{2}$D.$\sqrt{6}$

分析 直接利用空間距離公式求解即可.

解答 解:點A(2,3,5),B(3,1,4),則A,B兩點間的距離為:$\sqrt{(3-2)^{2}+(1-3)^{2}+(4-5)^{2}}$=$\sqrt{6}$.
故選:B.

點評 本題考查空間距離公式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)變量X,Y滿足約束條件$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-1≤0}\end{array}\right.$,且目標(biāo)函數(shù)Z=$\frac{x}{a}$+$\frac{y}$(1,b為正數(shù))的最大值為1,則a+2b的最小值為( 。
A.3B.6C.4$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知y=m+x和y=nx-1互為反函數(shù),則m=-1,n=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A是單位圓O上的一個動點,且點A在第一象限.B是圓O與x軸正半軸的交點,記∠AOB=α,若點A在直線4x-3y=0上,求$\frac{si{n}^{2}(α-π)+sin(\frac{3π}{2}+α)}{co{s}^{2}(\frac{5π}{2}+α)+cos(-\frac{3π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知($\frac{1}{7}$)a=$\frac{1}{3}$,log74=b,用a,b表示log4948為$\frac{a+2b}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.正方體ABCD-A1B1C1D1中,若$\overrightarrow{A{C_1}}$=x($\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{C{C_1}}$),則實數(shù)x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線a平行于平面α,則下列結(jié)論正確的是(  )
A.直線a一定與平面α內(nèi)所有直線平行
B.直線a一定與平面α內(nèi)所有直線異面
C.直線a一定與平面α內(nèi)唯一一條直線平行
D.直線a一定與平面α內(nèi)一組平行直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.把函數(shù)y=sinx(x∈R)的圖象上所有的點向左平行移動$\frac{π}{6}$個單位長度,再把所得圖象上所有點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變),得到的圖象所表示的函數(shù)是( 。
A.$y=sin(2x-\frac{π}{6})$,x∈RB.$y=sin(\frac{x}{2}+\frac{π}{12})$,x∈RC.$y=sin(2x+\frac{π}{6})$,x∈RD.$y=sin(2x+\frac{π}{3})$,x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4)上是減函數(shù),則實數(shù)a的取值范圍是( 。
A.$0≤a≤\frac{1}{5}$B.$a≤\frac{1}{5}$C.a≥-3D.$a≤\frac{1}{5}$或0

查看答案和解析>>

同步練習(xí)冊答案