【題目】若數(shù)列滿足:對(duì)于,都有為常數(shù)),則稱數(shù)列是公差為隔項(xiàng)等差數(shù)列.

)若,是公差為8隔項(xiàng)等差數(shù)列,求的前項(xiàng)之和;

)設(shè)數(shù)列滿足:,對(duì)于,都有

求證:數(shù)列隔項(xiàng)等差數(shù)列,并求其通項(xiàng)公式;

設(shè)數(shù)列的前項(xiàng)和為,試研究:是否存在實(shí)數(shù),使得成等比數(shù)列(?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.

【答案】當(dāng)為偶數(shù)時(shí),,

當(dāng)為奇數(shù)時(shí),

【解析】

試題()由新定義知:前項(xiàng)之和為兩等差數(shù)列之和,一個(gè)是首項(xiàng)為3,公差為8的等差數(shù)列前8項(xiàng)和,另一個(gè)是首項(xiàng)為17,公差為8的等差數(shù)列前7項(xiàng)和,所以前項(xiàng)之和根據(jù)新定義知:證明目標(biāo)為,

,相減得,當(dāng)為奇數(shù)時(shí),依次構(gòu)成首項(xiàng)為a,公差為2的等差數(shù)列,, 當(dāng)為偶數(shù)時(shí),依次構(gòu)成首項(xiàng)為2-a,公差為2的等差數(shù)列,先求和:當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),故當(dāng)時(shí),,, ,則,解得

試題解析:()易得數(shù)列

項(xiàng)之和

)(A

B

BA)得).

所以,為公差為2隔項(xiàng)等差數(shù)列.

當(dāng)為偶數(shù)時(shí),,

當(dāng)為奇數(shù)時(shí),

當(dāng)為偶數(shù)時(shí),

當(dāng)為奇數(shù)時(shí),

故當(dāng)時(shí),,,,

,則,解得

所以存在實(shí)數(shù),使得成等比數(shù)列(

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某校甲、乙、丙三個(gè)年級(jí)的學(xué)生志愿者人數(shù)分別是240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學(xué)去某敬老院參加獻(xiàn)愛心活動(dòng)。

(1)應(yīng)從甲、乙、丙三個(gè)年級(jí)的學(xué)生志愿者中分別抽取多少人?

(2)設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F(xiàn),G表示,現(xiàn)從中隨機(jī)抽取2名同學(xué)承擔(dān)敬老院的衛(wèi)生工作,求事件M“抽取的2名同學(xué)來自同一年級(jí)”發(fā)生的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在原點(diǎn),半徑為,若圓與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的四邊形是一個(gè)面積為的正方形(記為)設(shè)點(diǎn)軸的負(fù)半軸上,以點(diǎn)、和點(diǎn) 為頂點(diǎn)的三角形的面積為.

1)求圓的半徑及點(diǎn)的坐標(biāo);

2)若過點(diǎn)的直線與圓相交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在正方形內(nèi)(包括邊界)時(shí),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期,某公交公司分別推出支付寶和徽信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動(dòng)推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表l所示:

1

根據(jù)以上數(shù)據(jù),繪制了如右圖所示的散點(diǎn)圖.

(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),(c,d均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次y關(guān)于活動(dòng)推出天數(shù)x的回歸方程類型?(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求y關(guān)于x的回歸方程,并預(yù)測活動(dòng)推出第8天使用掃碼支付的人次;

參考數(shù)據(jù):

其中

參考公式:

對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】湖南省第九屆少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)于20181016日至20日在湘西龍山舉行.運(yùn)動(dòng)會(huì)期間,湖南省14個(gè)市州和17個(gè)民族縣市區(qū)組成的31個(gè)代表團(tuán)2631人參加,來自土家、苗、瑤、侗、白、維吾爾、壯、回、漢等22個(gè)民族的1991名運(yùn)動(dòng)員分別參加陀螺、射弩、秋千、高腳、板鞋、蹴球、鍵球、押加、民族健身操及表演項(xiàng)目比賽,是湖南省歷屆民族運(yùn)動(dòng)會(huì)規(guī)模最大、規(guī)格最高、參賽人數(shù)最多的一次.對(duì)本次運(yùn)動(dòng)會(huì)中320名志愿者的年齡抽樣調(diào)查統(tǒng)計(jì)后得到樣本頻率分布直方圖(如圖),但是年齡組為的數(shù)據(jù)不慎丟失,請(qǐng)完成下面的解答.

1)將頻率分布直方圖補(bǔ)充完整;

2)估計(jì)本次省民運(yùn)會(huì)中志愿者年齡的眾數(shù)和中位數(shù)(結(jié)果保留兩位小數(shù));

3)已知樣本容量為16,現(xiàn)在需要從樣本中30歲以下的志愿者中抽取2名志愿者談對(duì)本次運(yùn)動(dòng)會(huì)的感想,求被抽中的志愿者中恰有一名志愿者年齡不小于25歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的最小值;

(Ⅱ)討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會(huì)為了解高二年級(jí)600名學(xué)生課余時(shí)間參加中華傳統(tǒng)文化活動(dòng)的情況(每名學(xué)生最多參加7場).隨機(jī)抽取50名學(xué)生進(jìn)行調(diào)查,將數(shù)據(jù)分組整理后,列表如下:

參加場數(shù)

0

1

2

3

4

5

6

7

占調(diào)查人數(shù)的百分比

8%

10%

20%

26%

18%

m%

4%

2%

則以下四個(gè)結(jié)論中正確的是( )

A.表中m的數(shù)值為10

B.估計(jì)該年級(jí)參加中華傳統(tǒng)文化活動(dòng)場數(shù)不高于2場的學(xué)生約為108人

C.估計(jì)該年級(jí)參加中華傳統(tǒng)文化活動(dòng)場數(shù)不低于4場的學(xué)生約為216人

D.若采用系統(tǒng)抽樣方法進(jìn)行調(diào)查,從該校高二600名學(xué)生中抽取容量為30的樣本,則分段間隔為15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地三角工廠分別位于邊長為2的正方形的兩個(gè)頂點(diǎn)中點(diǎn).為處理這三角工廠的污水,在該正方形區(qū)域內(nèi)(含邊界)與等距的點(diǎn)處建一個(gè)污水處理廠,并鋪設(shè)三條排污管道,記輔設(shè)管道總長為千米.

1)按下列要求建立函數(shù)關(guān)系式:

i)設(shè),將表示成的函數(shù);

ii)設(shè),將表示成的函數(shù);

2)請(qǐng)你選用一個(gè)函數(shù)關(guān)系,確定污水廠位置,使鋪設(shè)管道總長最短.

查看答案和解析>>

同步練習(xí)冊(cè)答案