15.已知定點A(2,4),拋物線y2=2x上有一動點B,點P為線段AB的中點,求點P的軌跡方程.

分析 設(shè)B(m,n),即有n2=2m,AB的中點P為(x,y),運用中點坐標(biāo)公式,以及代入法,即可得到所求軌跡方程.

解答 解:設(shè)B(m,n),即有n2=2m,
AB的中點P為(x,y),
即有2x=2+m,2y=4+n,
即m=2x-2,n=2y-4,
即有(2y-4)2=4x-4,
即(y-2)2=x-1.
故答案為:(y-2)2=x-1.

點評 本題考查軌跡方程的求法,注意運用中點坐標(biāo)公式和橢圓的方程,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A、B、C、所對的邊分別為a、b、c,且$\sqrt{3}$asinB-bcosA=0,
(1)求角A的大小;(2)若a=1,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖3,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分別為AB,VA的中點.
(Ⅰ)求證:VB∥平面 M OC;
(Ⅱ)求證:平面MOC⊥平面VAB;
(Ⅲ)求三棱錐A-MOC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下面說法中正確的個數(shù)有( 。﹤
(1)若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$⊥$\overrightarrow$,
(2)若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{c}$且$\overrightarrow$≠$\overrightarrow{0}$,則$\overrightarrow{a}$=$\overrightarrow{c}$
(3)($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$) 
(4)($\overrightarrow{a}$•$\overrightarrow$)2=$\overrightarrow{a}$2•$\overrightarrow$2
(5)若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow{c}$∥$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow{c}$,
(6)$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)-$\overrightarrow$•($\overrightarrow{a}$•$\overrightarrow{c}$)不與$\overrightarrow{c}$垂直.
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若$c=\sqrt{7}$,△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若F1、F2是雙曲線$\frac{x^2}{4}-{y^2}=1$的兩個焦點,點P在雙曲線上,且點P的橫坐標(biāo)為8,則△F1PF2的面積為5$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)={e^x}(alnx+\frac{2}{x}+b)$,其中a,b∈R.e=2.71828是自然對數(shù)的底數(shù).
(1)若曲線y=f(x)在x=1處的切線方程為y=e(x-1).求實數(shù)a,b的值;
(2)①若a=-2時,函數(shù)y=f(x)既有極大值,又有極小值,求實數(shù)b的取值范圍;
②若a=-2,b≥-2.若f(x)≥kx對一切正實數(shù)x恒成立,求實數(shù)k的取值范圍(用b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.點P(-3,1)在橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左準(zhǔn)線上.過點P的直線l:5x+2y=13,經(jīng)直線y=-2反射后通過橢圓的左焦點,則這個橢圓的離心率為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知全集U=R,集合A={x|-5<x<7},B={x|a+1<x<2a+15}.
(1)若a=0,求A∪B和∁UB;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案