20.已知正三棱錐的側(cè)棱長(zhǎng)為2,底面邊長(zhǎng)為3,則該正三棱錐的外接球的表面積為( 。
A.$\frac{4}{3}π$B.C.$\frac{32}{3}π$D.16π

分析 由題意推出球心O到四個(gè)頂點(diǎn)的距離相等,利用直角三角形BOE,求出球的半徑,即可求出外接球的表面積.

解答 解:如圖,∵正三棱錐A-BCD中,底面邊長(zhǎng)為 3,
側(cè)棱長(zhǎng)為2,BE=$\frac{2}{3}$•$\frac{\sqrt{3}}{2}$•3=$\sqrt{3}$,∴高AE=$\sqrt{{AB}^{2}{-BE}^{2}}$=1.
由球心O到四個(gè)頂點(diǎn)的距離相等,
在直角三角形BOE中,BO=R,EO=$\sqrt{{OB}^{2}{-BE}^{2}}$=1-R,
由BO2=BE2+EO2,得R2=3+(1-R)2,R=2,
∴外接球的半徑為,表面積為:$\frac{4}{3}$•π•R3=$\frac{32π}{3}$,
故選:C.

點(diǎn)評(píng) 本題屬于中檔題,考查空間想象能力,計(jì)算能力;直角三角形BOE是本題解題的關(guān)鍵,仔細(xì)觀(guān)察和分析題意,是解好數(shù)學(xué)題目的前提.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.觀(guān)察下列等式

據(jù)此規(guī)律,第n個(gè)等式可為1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n}$=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=$\frac{1}{3}$x3+bx2+x+2有極值點(diǎn),則b的取值范圍是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)=|x|.
(I)解關(guān)于x的不等式f(x)+f(x-2)≥3;
(Ⅱ)設(shè)g(x)=f(x+$\frac{1}{x}$)+f(x-$\frac{1}{x}$),證明:g(x)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.不等式|2-x|<5的解集是( 。
A.{x|x>7或x<-3}B.{x|-3<x<7}C.{x|-7<x<3}D.{x|x>-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.2016年,包頭市將投資1494.88億進(jìn)行城鄉(xiāng)建設(shè).其中將對(duì)奧林匹克公園進(jìn)行二期擴(kuò)建,擬建包頭市最大的摩天輪建筑.其旋轉(zhuǎn)半徑50米,最高點(diǎn)距地面110米,運(yùn)行一周大約21分鐘.某人在最低點(diǎn)的位置坐上摩天輪,則第7分鐘時(shí)他距地面大約為( 。┟祝
A.75B.85C.100D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.探求凸多面體的面F、頂點(diǎn)數(shù)V和棱數(shù)E之間的關(guān)系得到的結(jié)論是( 。
A.無(wú)確定關(guān)系B.F+E-V=2C.E+V-F=2D.F+V-E=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.解不等式:|x-4|-|x-2|>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)f(x)=ln(1+3x+9xa),對(duì)于任意的a∈R,若當(dāng)x∈(-∞,0]時(shí),f(x)恒有意義,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2)B.(-∞,2]C.[-2,+∞)D.(-2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案