已知命題:若數(shù)列{an}為等差數(shù)列,且ama,anb(mn,m、nN*),則amn;現(xiàn)已知等比數(shù)列{bn}(bn>0nN*), bma,bnb(mn,m、nN*),若類比上述結(jié)論,則可得到bmn________.

 

【解析】等差數(shù)列中的bnam可以類比等比數(shù)列中的bnam,等差數(shù)列中的bnam可以類比等比數(shù)列中的,等差數(shù)列中的可以類比等比數(shù)列中的.bmn.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題5第2課時(shí)練習(xí)卷(解析版) 題型:解答題

已知橢圓M1(ab0)的短半軸長(zhǎng)b1,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為64.

(1)求橢圓M的方程;

(2)設(shè)直線lxmyt與橢圓M交于AB兩點(diǎn),若以AB為直徑的圓經(jīng)過(guò)橢圓的右頂點(diǎn)C,求t的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第1課時(shí)練習(xí)卷(解析版) 題型:解答題

一個(gè)幾何體的三視圖如下圖所示,已知正()視圖是底邊長(zhǎng)為1的平行四邊形,側(cè)()視圖是一個(gè)長(zhǎng)為,寬為1的矩形,俯視圖為兩個(gè)邊長(zhǎng)為1的正方形拼成的矩形.

(1)求該幾何體的體積V

(2)求該幾何體的表面積S.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第2課時(shí)練習(xí)卷(解析版) 題型:填空題

若數(shù)列{an}的前n項(xiàng)和Snan,則{an}的通項(xiàng)公式是an________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a415,S555,則數(shù)列{an}的公差是( )

A B4 C.-4 D.-3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第1課時(shí)練習(xí)卷(解析版) 題型:選擇題

)執(zhí)行如圖所示的程序框圖,若輸入n10,則輸出S( )

A B C D

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第3課時(shí)練習(xí)卷(解析版) 題型:填空題

已知向量a(m,n),b(p,q),定義a?bmnpq.給出下列四個(gè)結(jié)論:a?a0;a?bb?a;(ab)?aa?ab?a;(a?b)2(a·b)2(m2q2)·(n2p2)

其中正確的結(jié)論是________(寫(xiě)出所有正確結(jié)論的序號(hào))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第3課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知i為虛數(shù)單位,復(fù)數(shù)z,則|z|( )

Ai B1I C1i D.-i

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第4課時(shí)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)|xa|.

(1)若不等式f(x)≤3的解集為{x|1≤x≤5},求實(shí)數(shù)a的值;

(2)(1)的條件下,若f(x)f(x5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案