某專營(yíng)店經(jīng)銷某商品,當(dāng)售價(jià)不高于10元時(shí),每天能銷售100件,當(dāng)價(jià)格高于10元時(shí),每提高1元,銷量減少3件,若該專營(yíng)店每日費(fèi)用支出為500元,用x表示該商品定價(jià),y表示該專營(yíng)店一天的凈收入(除去每日的費(fèi)用支出后的收入).
(1)把y表示成x的函數(shù);
(2)試確定該商品定價(jià)為多少元時(shí),一天的凈收入最高?并求出凈收入的最大值.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)條件建立分段函數(shù)關(guān)系即可;
(2)結(jié)合一元二次函數(shù)的最值性質(zhì)即可求出函數(shù)的最值.
解答: (1)當(dāng)0≤x≤10,y=100x-500,
當(dāng)x>10,銷量為100-3(x-10)=-3x+130,此時(shí)y=(-3x+130)x-500=-3x2+130x-500,
故y=
100x-500,0≤x≤10,x∈N
-3x2+130x-500,x>10,x∈N

(2)當(dāng)0≤x≤10,y=100x-500≤500,
當(dāng)x>10,y=-3x2+130x-500=-3(x-
65
3
2+(
65
3
2-500,
∵x∈N,
∴當(dāng)x=22時(shí),函數(shù)取得最大值,此時(shí)y=-3×222+130×22-500=908,
綜上當(dāng)商品定價(jià)為22元時(shí),一天的凈收入最高,凈收入的最大值為908.
點(diǎn)評(píng):本題主要考查函數(shù)應(yīng)用問(wèn)題,根據(jù)條件建立函數(shù)關(guān)系,利用一元二次函數(shù)的性質(zhì)求最值是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:存在x∈R,使a>x2+
1
x2
;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果命題“p或q”是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)為4的正方體被一平面截成兩個(gè)幾何體,其中一個(gè)幾何體的三視圖如圖所示,那么該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lnx
1+x
-lnx,則有下列結(jié)論中錯(cuò)誤的是( 。
A、?x0∈R,f(x)=0
B、若x0是f(x)的最大值點(diǎn),則f(x0)=x0
C、若x0是f(x)的最大值點(diǎn),則f(x0)<
1
2
D、若x0是f(x)的極大值點(diǎn),則f(x)在(x0,+∞)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=
1
2
AD=1,CD=
3

(Ⅰ)若點(diǎn)M是棱PC的中點(diǎn),求證:PA∥平面BMQ;
(Ⅱ)求證:若二面角M-BQ-C為30°,試求
PM
PC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+x,x≤0
-x2,x>0
若f(f(t))≤2,則實(shí)數(shù)t的取值范圍是( 。
A、(-∞,
2
]
B、[
2
,+∞)
C、(-∞,-2]
D、[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,己知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0
)的離心率e=
2
2
,左、右焦點(diǎn)分別為F1,F(xiàn)2,拋物線y2=4
2
x的焦點(diǎn)恰好是該橢圓的一個(gè)頂點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若斜率為k(k≠0)的直線與x軸、橢圓順次交于A(2,0)、M、N三點(diǎn).求證∠NF2F1=∠MF2A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(3,m)在直線x+y-1=0上,則m的值為( 。
A、5B、2C、-2D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:2x-y+1=0,l2:x-3y-=0,則l1到l2的角是(  )
A、45°B、60°
C、120°D、135°

查看答案和解析>>

同步練習(xí)冊(cè)答案