設函數(shù)f(x,y)=(1+
m
y
)x(m>0,y>0)

(1)當m=3時,求f(6,y)的展開式中二項式系數(shù)最大的項;
(2)若f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
且a3=32,求
4
i=0
ai
分析:(1)當m=3時,根據(jù)f(6,y)=(1+
3
y
)
6
,故展開式中二項式系數(shù)最大的項是第4項.
(2)f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
=(1+
m
y
)4
,由 a3=C43m3=32,可得m值,從而求得
4
i=0
ai
 的值.
解答:解:(1)當m=3時,求f(6,y)=(1+
3
y
)
6
,展開式中二項式系數(shù)最大的項是第4項:
C
3
6
(
3
y
)3=
540
y3

(2)f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
=(1+
m
y
)4
,
∵a3=C43m3=32,∴m=2,
4
i=0
ai=(1+
2
1
)4=81
點評:本題考查二項式系數(shù)的定義,求二項式展開項中的某一項,求出m的值,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x,y)=(1+
m
y
)x(m>0,y>0)

(1)當m=3時,求f(6,y)的展開式中二項式系數(shù)最大的項;
(2)若f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
且a3=32,求
4
i=0
ai

(3)設n是正整數(shù),t為正實數(shù),實數(shù)t滿足f(n,1)=mnf(n,t),求證:f(2010,1000
t
)>3f(-2010,t)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設函數(shù)f(x)=
-x2-2x+15
,集合A={x|y=f(x)},B={y|y=f(x)},則右圖中陰影部分表示的集合為( 。
A、[0,3]
B、(0,3)
C、(-5,0]∪[3,4)
D、[-5,0)∪(3,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•湖北模擬)設函數(shù)f(x)=
a
b
+m+m
,
a
=(2,-cosωx)
,
b
=(sinωx,-2)
(其中ω>0,m∈R),且f(x)的圖象在y軸右側的第一個最高點的橫坐標為2.
(1)求ω;
(2)若f(x)在區(qū)間[8,16]上最大值為3,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x,y)=(1+
m
y
)x(m>0,y>0)

(1)當m=3時,求f(6,y)的展開式中二項式系數(shù)最大的項;
(2)若f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
且a3=32,求
4


i=0
ai

查看答案和解析>>

同步練習冊答案