精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的離心率,且經過點,,,為橢圓的四個頂點(如圖),直線過右頂點且垂直于軸.

(1)求該橢圓的標準方程;

(2)上一點(軸上方),直線,分別交橢圓于兩點,若,求點的坐標.

【答案】(1)(2)

【解析】

1)利用橢圓的離心率和經過的點,列方程組求解即可.(2)設P2m),m0,得直線PC方程與橢圓聯(lián)立,利用韋達定理,推出E的坐標, 同理F點橫坐標,由SPCD2SPEF,轉化求解即可.

(1)因的離心率,且經過點

所以

解得,.所以橢圓標準方程為

(2)由(1)知橢圓方程為,所以直線方程為,,

,,則直線的方程為,

聯(lián)立方程組

所以點的橫坐標為;

又直線的方程為

聯(lián)立方程組,

所以點的橫坐標為

,

則有,則,

化簡得,解得,因為,所以,

所以點的坐標為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質量,某城市環(huán)保局隨機抽取了一年內100天的空氣質量指數(AQI)的檢測數據,結果統(tǒng)計如表:

AQI

空氣質量

優(yōu)

輕度污染

中度污染

重度污染

重度污染

天數

6

14

18

27

25

10

1)從空氣質量指數屬于[0,50],(50100]的天數中任取3天,求這3天中空氣質量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天因空氣質量造成的經濟損失y(單位:元)與空氣質量指數x的關系式為,假設該企業(yè)所在地7月與8月每天空氣質量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質量對應的概率以表中100天的空氣質量的頻率代替.

i)記該企業(yè)9月每天因空氣質量造成的經濟損失為X元,求X的分布列;

ii)試問該企業(yè)7月、8月、9月這三個月因空氣質量造成的經濟損失總額的數學期望是否會超過2.88萬元?說明你的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,曲線在點處切線與直線垂直.

(1)試比較的大小,并說明理由;

(2)若函數有兩個不同的零點,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,201911日起我國實施了個人所得稅的新政策,其政策的主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用等.其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內容如下:

級數

一級

二級

三級

四級

每月應納稅所得額(含稅)

不超過3000元的部分

超過3000元至12000元的部分

超過12000元至25000元的部分

超過25000元至35000元的部分

稅率

3

10

20

25

1)現有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項附加扣除.請問李某月應繳納的個稅金額為多少?

2)為研究月薪為20000元的群體的納稅情況,現收集了某城市500名的公司白領的相關資料,通過整理資料可知,有一個孩子的有400人,沒有孩子的有100人,有一個孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項附加扣除(受統(tǒng)計的500人中,任何兩人均不在一個家庭).若他們的月收入均為20000元,依據樣本估計總體的思想,試估計在新個稅政策下這類人群繳納個稅金額的分布列與期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學生對函數的性質進行研究,得出如下的結論:

函數在上單調遞減,在上單調遞增;

是函數圖象的一個對稱中心;

函數圖象關于直線對稱;

存在常數,使對一切實數x均成立,

其中正確命題的個數是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓的中心在原點,焦點分別在軸與軸上,它們有相同的離心率,并且的短軸為的長軸,的四個焦點構成的四邊形面積是.

(1)求橢圓的方程;

(2)設是橢圓上非頂點的動點,與橢圓長軸兩個頂點,的連線,分別與橢圓交于,點.

(i)求證:直線,斜率之積為常數;

(ii)直線與直線的斜率之積是否為常數?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論的單調性;

2)如果方程有兩個不相等的解,且,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知拋物線與圓 )相交于, , ,四個點,

1)求的取值范圍;

2)設四邊形的面積為,當最大時,求直線與直線的交點的坐標.

查看答案和解析>>

同步練習冊答案