7.一個(gè)盒子中裝有5個(gè)紅球,3個(gè)黃球,2個(gè)黑球,每次任取一個(gè)球,觀察其顏色后放回,如此繼續(xù),求在取得黃球之前取得紅球的概率.

分析 利用相互獨(dú)立事件概率乘法公式求解.

解答 解:一個(gè)盒子中裝有5個(gè)紅球,3個(gè)黃球,2個(gè)黑球,
每次任取一個(gè)球,觀察其顏色后放回,
如此繼續(xù),則在取得黃球之前取得紅球的概率:
p=$\frac{3}{10}×\frac{5}{10}$=0.15.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意相互獨(dú)立事件概率乘法公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知集合M={y|y=2-x},N={x|y=x},則M∩N=(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)A(-1,2),B(3,1),若直線ax-y-2=0與線段AB相交,則a的范圍是( 。
A.[-4,1]B.[1,4]C.(-∞,-4]∪[1,+∞)D.(-∞,-1]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.直線3x+4y-12=0與兩坐標(biāo)軸的交點(diǎn)為A,B,其中點(diǎn)A在x軸上,點(diǎn)B在y軸上.
(1)求交點(diǎn)A和B的坐標(biāo);
(2)求以原點(diǎn)為圓心且與直線AB相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax2-(a+4)x+4.
(1)若對(duì)任意的x∈(0,1],都有f(x)>(a-1)x2恒成立,求實(shí)數(shù)a的取值范圍;
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$cos(α+\frac{2}{3}π)=\frac{4}{5},-\frac{π}{2}<α<0$,則$sin(α+\frac{π}{3})+sinα$等于( 。
A.$-\frac{{4\sqrt{3}}}{5}$B.$-\frac{{3\sqrt{3}}}{5}$C.$\frac{{3\sqrt{3}}}{5}$D.$\frac{{4\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)f'(x)是函數(shù)f(x)的導(dǎo)數(shù),f''(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)f(x)的拐點(diǎn).某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有拐點(diǎn),任何一個(gè)三次函數(shù)都有對(duì)稱中心,且拐點(diǎn)就是對(duì)稱中心,
設(shè)函數(shù)g(x)=x3-3x2+4x+2,利用上述探究結(jié)果
計(jì)算:$g(\frac{1}{10})+g(\frac{2}{10})+g(\frac{3}{10})+…+g(\frac{19}{10})$=76.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,復(fù)數(shù)(2+i)2的共軛復(fù)數(shù)為( 。
A.3-4iB.3+4iC.5-4iD.5+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果實(shí)數(shù)x,y滿足關(guān)系$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,又$\frac{2x+y-7}{x-3}≤c$恒成立,則c的取值范圍為( 。
A.[$\frac{9}{5}$,3]B.(-∞,3]C.[3,+∞)D.(2,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案