【題目】先后擲子(子的六個面上分別標有1,2,3,4,5,6個點)兩次,落在水平桌面后,記正面朝上的點數(shù)分別為x,y,設(shè)事件A為“x+y為偶數(shù)”,事件B為“x,y中有偶數(shù)且x≠y”,則概率P(B|A)=(
A.
B.
C.
D.

【答案】A
【解析】解:根據(jù)題意,若事件A為“x+y為偶數(shù)”發(fā)生,則x、y兩個數(shù)均為奇數(shù)或均為偶數(shù). 共有2×3×3=18個基本事件,
∴事件A的概率為P(A)=
而A、B同時發(fā)生,基本事件有“2+4”、“2+6”、“4+2”、“4+6”、“6+2”、“6+4”,
一共有6個基本事件,
因此事件A、B同時發(fā)生的概率為P(AB)=
因此,在事件A發(fā)生的情況下,B發(fā)生的概率為P(B|A)=
故選:A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖①,在平面內(nèi) 的菱形 都是正方形.將兩個正方形分別沿 折起,使 重合于點 .設(shè)直線 過點 且垂直于菱形ABCD所在的平面,點 是直線 上的一個動點,且與點 位于平面 同側(cè)(圖②).

(1)求證:不管點 如何運動都有 平面 ;

(2)當線段時,求二面角 的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若的極值點,求的極大值;

(2)求實數(shù)的范圍,使得恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校高三畢業(yè)班報考體育專業(yè)學生的體重(單位:千克)情況,將從該市某學校抽取的樣本數(shù)據(jù)整理后得到如下頻率分布直方圖.已知圖中從左至右前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12. (I)求該校報考體育專業(yè)學生的總?cè)藬?shù)n;
(Ⅱ)若用這所學校的樣本數(shù)據(jù)來估計該市的總體情況,現(xiàn)從該市報考體育專業(yè)的學生中任選3人,設(shè)ξ表示體重超過60千克的學生人數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[x]表示不超過x的最大整數(shù),例如:[π]=3. S1=[ ]+[ ]+[ ]=3
S2=[ ]+[ ]+[ ]+[ ]+[ ]=10
S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+ ]=21,
…,
依此規(guī)律,那么S10=(
A.210
B.230
C.220
D.240

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)當時, 恒成立,求的最大值;

(3)設(shè),若的值域為,求的取值范圍.(提示: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若 ,求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )單調(diào),則ω的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個內(nèi)角,則(
A.f(sinα)>f(sinβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)
D.f(sinα)>f(cosβ)

查看答案和解析>>

同步練習冊答案