【題目】已知點(diǎn)是橢圓E: (a>b>0)上一點(diǎn),離心率為.
(1)求橢圓E的方程;
(2)設(shè)不過(guò)原點(diǎn)O的直線(xiàn)l與該橢圓E交于P,Q兩點(diǎn),滿(mǎn)足直線(xiàn)OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.
【答案】(1)(2)(0,).
【解析】試題分析:(1)根據(jù)離心率得a,b,c三者關(guān)系,再代入點(diǎn)可得a2=4,b2=3.(2)因?yàn)橹本(xiàn)OP,PQ,OQ的斜率依次成等比數(shù)列,可得 ,再直線(xiàn)l的方程為y=kx+m(m≠0),聯(lián)立直線(xiàn)方程與橢圓方程,利用韋達(dá)定理代入關(guān)系式得,根據(jù)點(diǎn)到直線(xiàn)距離公式得高,根據(jù)弦長(zhǎng)公式得底邊邊長(zhǎng),結(jié)合三角形面積公式得關(guān)于m函數(shù)關(guān)系式,最后利用基本不等式求最值,得取值范圍
試題解析:解:(1)由題意知,=,
所以=,a2=b2.
又+=1,解得a2=4,b2=3.
因此橢圓E的方程為
(2)由題意可知,直線(xiàn)l的斜率存在且不為0,
故可設(shè)直線(xiàn)l的方程為y=kx+m(m≠0),
P(x1,y1),Q(x2,y2),
由消去y得,
(3+4k2)x2+8kmx+4(m2-3)=0.
由題意知Δ=64k2m2-16(3+4k2)(m2-3)
=16(12k2-3m2+9)>0,
即4k2-m2+3>0.
又x1+x2=-,x1x2=
所以y1y2=(kx1+m)(kx2+m)
=k2x1x2+km(x1+x2)+m2=.
因?yàn)橹本(xiàn)OP,PQ,OQ的斜率依次成等比數(shù)列,
所以·==k2,
即(4k2-3)m2=0,
∵m≠0,∴k2=.
由于直線(xiàn)OP,OQ的斜率存在,且Δ>0,
得0<m2<6,且m2≠3.
設(shè)d為點(diǎn)O到直線(xiàn)l的距離,
則S△OPQ=d|PQ|
=× |x1-x2|
=|m|
又因?yàn)?/span>m2≠3,
所以S△OPQ=<×=.
所以△OPQ面積的取值范圍為(0,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)).
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)設(shè),若對(duì)任意的,存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足a1= ,an= (n≥2,n∈N).
(1)試判斷數(shù)列 是否為等比數(shù)列,并說(shuō)明理由;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)設(shè)cn=ansin ,數(shù)列{cn}的前n項(xiàng)和為T(mén)n . 求證:對(duì)任意的n∈N* , Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是橢圓E: (a>b>0)上一點(diǎn),離心率為.
(1)求橢圓E的方程;
(2)設(shè)不過(guò)原點(diǎn)O的直線(xiàn)l與該橢圓E交于P,Q兩點(diǎn),滿(mǎn)足直線(xiàn)OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國(guó)詩(shī)詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù){an}滿(mǎn)a1=0,an+1=an+2n,那a2016的值是( )
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中的“兩鼠穿墻題”是我國(guó)數(shù)學(xué)的古典名題:“今有垣厚若干尺,兩鼠對(duì)穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問(wèn)何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進(jìn)一尺,以后每天加倍;小老鼠第一天也進(jìn)一尺,以后每天減半.”如果墻足夠厚,為前天兩只老鼠打洞之和,則_________________尺.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)(x1 , y1),(x2 , y2),…,(xn , yn),是變量x和y的n個(gè)樣本點(diǎn),直線(xiàn)l是由這些樣本點(diǎn)通過(guò)最小二乘法得到的線(xiàn)性回歸方程(如圖),以下結(jié)論中正確的是( )
A.x和y正相關(guān)
B.x和y的相關(guān)系數(shù)為直線(xiàn)l的斜率
C.x和y的相關(guān)系數(shù)在﹣1到0之間
D.當(dāng)n為偶數(shù)時(shí),分布在l兩側(cè)的樣本點(diǎn)的個(gè)數(shù)一定相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為,現(xiàn)有甲,乙二人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到兩人中有一人取到白球即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.
(Ⅰ)求袋中原有白球的個(gè)數(shù):
(Ⅱ)求取球次數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com