公安部交管局修改后的酒后違法駕駛機動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其判斷標準是駕駛?cè)藛T每100毫升血液中的酒精含量X毫克,當20≤X<80時,認定為酒后駕車;當X≥80時,認定為醉酒駕車,重慶市公安局交通管理部門在對G42高速路我市路段的一次隨機攔查行動中,依法檢測了200輛機動車駕駛員的每100毫升血液中的酒精含量,酒精含量X(單位:毫克)的統(tǒng)計結(jié)果如下表:

X
[0,20)
[20,40)
[40,60)
[60,80)
[80,100)
[100,+∞)
人數(shù)
t
1
1
1
1
1
依據(jù)上述材料回答下列問題:
(1)求t的值;
(2)從酒后違法駕車的司機中隨機抽取2人,求這2人中含有醉酒駕車司機的概率.

(1)195(2)

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

下表中有三個游戲規(guī)則,袋子中分別裝有大小相同的球,從袋子中取球,分別計算甲獲勝的概率,說明哪個游戲是公平的?

游戲1
 
游戲2
 
游戲3
 
1個紅球和1個白球
 
2個紅球和2個白球
 
3個紅球和1個白球
 
取1個球
 
取1個球,再取1個球
 
取1個球,再取1個球
 
取出的球是紅球→甲勝
 
取出的兩個球同色→甲勝
 
取出的兩個球同色→甲勝
 
取出的球是白球→乙勝
 
取出的兩個球不同色→乙勝
 
取出的兩個球不同色→乙勝
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:

API







空氣質(zhì)量
優(yōu)

輕微污染
輕度污染
中度污染
中重度污染
重度污染
天數(shù)
4
13
18
30
9
11
15
(1)若某企業(yè)每天由空氣污染造成的經(jīng)濟損失S(單位:元)與空氣質(zhì)量指數(shù)API(記為w)的關(guān)系式為:
,試估計在本年度內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于200元且不超過600元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染完成下面列聯(lián)表,并判斷能否有的把握認為該市本年空氣重度污染與供暖有關(guān)?
附:



















 
非重度污染
重度污染
合計
供暖季
 
 
 
非供暖季
 
 
 
合計
 
 
100
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

現(xiàn)有7道題,其中5道甲類題,2道乙類題,張同學從中任取2道題解答.試求:
(1)所取的兩道題都是甲類題的概率;
(2)所取的兩道題不是同一類題的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個,已知從袋子中隨機抽取1個小球,取到標號為2的小球的概率是.
(1)求n的值;
(2)從袋子中不放回地隨機抽取2個球,記第一次取出小球標號為a,第二次取出的小球標號為b.①記“ab=2”為事件A,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件“x2y2>(ab)2恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了參加2013年市級高中籃球比賽,該市的某區(qū)決定從四所高中學校選出人組成男子籃球隊代表所在區(qū)參賽,隊員來源人數(shù)如下表:

學校
學校甲
學校乙
學校丙
學校丁
人數(shù)




該區(qū)籃球隊經(jīng)過奮力拼搏獲得冠軍,現(xiàn)要從中選出兩名隊員代表冠軍隊發(fā)言.
(Ⅰ)求這兩名隊員來自同一學校的概率;
(Ⅱ)設(shè)選出的兩名隊員中來自學校甲的人數(shù)為,求隨機變量的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

袋內(nèi)裝有6個球,這些球依次被編號為1、2、3、……、6,設(shè)編號為n的球重n2-6n+12(單位:克),這些球等可能地從袋里取出(不受重量、編號的影響).
(1)從袋中任意取出一個球,求其重量大于其編號的概率;
(2)如果不放回地任意取出2個球,求它們重量相等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))AB,系統(tǒng)AB在任意時刻發(fā)生故障的概率分別為p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值;
(2)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結(jié)束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個白球的概率;②獲獎的概率.
(2)求在兩次游戲中獲獎次數(shù)X的分布列及數(shù)學期望E(X).

查看答案和解析>>

同步練習冊答案