精英家教網 > 高中數學 > 題目詳情
10.已知$tan\;α+\frac{1}{tan\;α}=\frac{5}{2}$,求$2{sin^2}({3π-α})-3cos({\frac{π}{2}+α})sin({\frac{3π}{2}-α})+2$的值.

分析 利用同角三角函數的基本關系、誘導公式化簡要求的式子,可得結果.

解答 解:∵$tan\;α+\frac{1}{tan\;α}=\frac{5}{2}$,即2tan2α-5tanα+2=0,解得$tan\;α=\frac{1}{2}$或tanα=2,
∴$2{sin^2}({3π-α})-3cos({\frac{π}{2}+α})sin({\frac{3π}{2}-α})+2=2{sin^2}α-3sin\;αcos\;α+2$
=$\frac{{2{{sin}^2}α-3sin\;αcos\;α}}{{{{sin}^2}α+{{cos}^2}α}}+2$=$\frac{{2{{tan}^2}α-3tanα}}{{{{tan}^2}α+1}}+2$,
當$tanα=\frac{1}{2}$時,原式=$\frac{{2×{{({\frac{1}{2}})}^2}-3×\frac{1}{2}}}{{{{({\frac{1}{2}})}^2}+1}}+2=-\frac{4}{5}+2=\frac{6}{5}$;
當tanα=2時,原式=$\frac{{2×{2^2}-3×2}}{{{2^2}+1}}+2=\frac{2}{5}+2=\frac{12}{5}$,
故要求的式子的值為$\frac{6}{5}$或$\frac{12}{5}$.

點評 本題主要考查利用同角三角函數的基本關系、誘導公式化簡、求值,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

20.曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數)上的點到其焦點的距離的最小值為( 。
A.$\sqrt{5}$-3B.$\sqrt{5}$-2C.3-$\sqrt{5}$D.1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.全稱命題:?x∈R,x2>1的否定是$?{x_0}∈R,{x_0}^2≤1$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數f(x)=4x2-4ax+5在閉區(qū)間[0,2]上有最小值3,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知集合A={x|3≤x<6},B={x|x2+18<11x}.求∁R(A∩B),(∁RB)∪A.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.《中國好聲音(TheVoiceofChina)》是由浙江衛(wèi)視聯合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012年7月13日在浙江衛(wèi)視播出.每期節(jié)目有四位導師參加.導師背對歌手,當每位參賽選手演唱完之前有導師為其轉身,則該選手可以選擇加入為其轉身的導師的團隊中接受指導訓練.已知某期《中國好聲音》中,6位選手唱完后,四位導師為其轉身的情況如下表所示:
導師轉身人數(人)4321
獲得相應導師轉身的選手人數(人)1221
現從這6位選手中隨機抽取兩人考查他們演唱完后導師的轉身情況.
(1)請列出所有的基本事件;
(2)求兩人中恰好其中一位為其轉身的導師不少于3人,而另一人為其轉身的導師不多于2人的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知$f(x)=\left\{\begin{array}{l}3({a-1})x+4a\;,\;\;x<1\\{log_a}x\;,\;\;x≥1\end{array}\right.$是R上的減函數,那么a的取值范圍是[$\frac{3}{7}$,1).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若復數z=(a-3)+(a2-2a-3)i為實數(i為虛數單位),則實數a的值是(  )
A.3B.-3或1C.3或-1D.-1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.下列命題中的假命題是( 。
A.?x∈R,ex>0B.$?{x_0}∈{N^*},sin\frac{π}{2}{x_0}=1$
C.?x0∈R,lnx0<0D.?x∈N,x2>0

查看答案和解析>>

同步練習冊答案