已知拋物線的焦點(diǎn)和點(diǎn)為拋物線上一點(diǎn),則的最小值是(  )
A.3B.9C.12D.6
B

試題分析:由拋物線的定義知:|PF|=點(diǎn)P到準(zhǔn)線的距離。所以的最小值就是拋物線上的一點(diǎn)到A點(diǎn)距離和到準(zhǔn)線的距離最小,過(guò)A做準(zhǔn)線的垂線,交拋物線與點(diǎn)P,則此時(shí)的值最小,所以最小值為8+1=9.
點(diǎn)評(píng):熟記拋物線的焦半徑公式:
(1)若P()為拋物線y2=2px(p>0)上任意一點(diǎn)?則|PF|=
(2) 若P()為拋物線y2=-2px(p>0)上任意一點(diǎn)?則|PF|= ;
(3) 若P()為拋物線x2=2py(p>0)上任意一點(diǎn)?則|PF|= ;
(4)若P()為拋物線x2=-2py(p>0)上任意一點(diǎn)?則PF=。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿分12分)已知點(diǎn),直線 交軸于點(diǎn),點(diǎn)上的動(dòng)點(diǎn),過(guò)點(diǎn)垂直于的直線與線段的垂直平分線交于點(diǎn)
(Ⅰ)求點(diǎn)的軌跡的方程;(Ⅱ)若 A、B為軌跡上的兩個(gè)動(dòng)點(diǎn),且 證明直線AB必過(guò)一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在拋物線上取橫坐標(biāo)為,的兩點(diǎn),經(jīng)過(guò)兩點(diǎn)引一條割線,有平行于該割線的一條直線同時(shí)與該拋物線和圓相切,則拋物線的頂點(diǎn)坐標(biāo)是
A.(-2,-9)B.(0,-5)C.(2,-9)D.(1,-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的焦距為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn)的“非常距離”
給出如下定義:若,則點(diǎn)與點(diǎn)的“非常距離”為
,則點(diǎn)與點(diǎn)的“非常距離”為
已知是直線上的一個(gè)動(dòng)點(diǎn),點(diǎn)的坐標(biāo)是(0,1),則點(diǎn)與點(diǎn)的“非常距離”的最小值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為,過(guò)點(diǎn)M(0,)與x軸不垂直的直線交橢圓于P、Q兩點(diǎn).
(1)求橢圓的方程;
(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線與直線有兩個(gè)交點(diǎn),則的取值范圍為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知已知點(diǎn)(2,3)在雙曲線C:上,C的焦距為4,
則它的離心率為( )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓和雙曲線有相同的焦點(diǎn)、,P是兩曲線的一個(gè)公共點(diǎn),則的值是(。
A.m-aB.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案