二項式(2x+
x
)4
的展開式中含x3項系數(shù)為
 
考點:二項式定理
專題:二項式定理
分析:先求得二項式展開式的通項公式,再令x的冪指數(shù)等于3,求得r的值,即可求得含x3項的系數(shù).
解答: 解:二項式(2x+
x
)4
的展開式的通項公式為Tr+1=
C
r
4
•24-rx4-
r
2
,
令4-
r
2
=3,求得r=2,故開式中含x3項系數(shù)為
C
2
4
•22=24,
故答案為:24.
點評:本題主要考查二項式定理的應(yīng)用,二項式展開式的通項公式,二項式系數(shù)的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P:
x2
1-2m
+
y2
m+2
=1表示雙曲線,q:函數(shù)g(x)=3x2+2mx+m+
4
3
有兩個不同的零點.
(1)若p為假命題,求實數(shù)m的取值范圍,
(2)若p∧q,為假命題,pⅤq為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項和為Sn,已知對任意的n∈N*,點(n,Sn),均在函數(shù)y=2x+r(r為常數(shù))的圖象上.(Ⅰ)求an和r的值;
(Ⅱ)記  bn=
n
an+1
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足an+2Sn•Sn-1=0(n≥2,且n∈N),a1=
1
2

(1)求證:{
1
Sn
}是等差數(shù)列;
(2)若bn=Sn•Sn+1,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有限數(shù)列A={a1,a2,…,an}的前n項和為Sn,定義
S1+S2+…+Sn
n
為A的“凱森和”,若數(shù)列{a1,a2,…,a99}的“凱森和”為1000,則數(shù)列{1,a1,a2,…,a99}的“凱森和”為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點P(-4,3),
(1)求
sin(π-α)+cos(-α)
tan(π+α)
的值;      
(2)求sinαcosα+cos2α-sin2α+1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

列命題:①“?實數(shù)a,使
a
為正整數(shù)”;②命題“若a>1,則不等式ax2-2ax+a+3>0的解集為R”的否定;③“若a2<b2,則a<b”的逆命題;④函數(shù)f(x)=ex-2,的零點落在區(qū)間(0,1)內(nèi).其中正確的命題個數(shù)是(  )
A、①④B、①③C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x0是方程10-x=lnx的解,且x0∈(k,k+1)(k∈Z,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對的邊分別為a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(1)求角C的值;  
(2)設(shè)函數(shù)f(x)=sinωx-
3
cosωx(ω>0),且f(x)圖象上相鄰兩最高點間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案