精英家教網 > 高中數學 > 題目詳情
18.設f(x)=x3-$\frac{1}{2}$x2-2x+5.求函數f(x)的單調遞增、單調遞減區(qū)間.

分析 求出函數的導數,解關于導函數的不等式,求出函數的單調區(qū)間即可.

解答 解:f′(x)=3x2-x-2=(3x+2)(x-1).
令f′(x)>0,得x<-$\frac{2}{3}$或x>1.
令f′(x)<0,得-$\frac{2}{3}$<x<1.
∴函數f(x)的單調遞增區(qū)間為(-∞,-$\frac{2}{3}$),(1,+∞);單調遞減區(qū)間為(-$\frac{2}{3}$,1).

點評 本題考查了函數的單調性問題,考查導數的應用,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

19.已知正方形ADEF所在平面與等腰梯形BCEF所在平面互相垂直,且BC=2BF=2EF=4,G為BC中點.
(1)求證:AB∥平面DFG;
(2)求證:FG⊥平面BDE;
(3)求該多面體體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且經過點(2,0)
(Ⅰ)求橢圓C的方程
(Ⅱ)若與坐標軸不垂直的直線l經過橢圓C的左焦點F(-c,0),且與橢圓C交于不同兩點A,B,問是否存在常數λ,(λ為實數),使|AB|=λ|AF||BF|恒成立,若存在,請求出λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知二階矩陣A有特征值λ1=3及其對應的一個特征向量$\overrightarrow{a}$1=$[\begin{array}{l}{1}\\{1}\end{array}]$,特征值λ2=-1及其對應的一個特征向量$\overrightarrow{a}$2=$[\begin{array}{l}{1}\\{-1}\end{array}]$,
(1)求矩陣A;  
(2)求矩陣A的逆矩陣A-1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.如圖所示,在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中點,
(1)求異面直線A1M和C1D1所成的角的正切值;
(2)求二面角C1-B1C-D1的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知偶函數f(x)在[0,+∞)單調遞減,f(2)=0.若f(x-1)>0,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.給出以下四個問題,
①輸入一個數x,輸出它的相反數.
②求面積為6的正方形的周長.
③求三個數a,b,c中的最大數.
④求函數f(x)=$\left\{\begin{array}{l}{x-1,x≥0}\\{x+2,x<0}\end{array}\right.$的函數值.
其中不需要用條件語句來描述其算法的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.設U=R,集合A={x|x2+3x+2=0},B={x|(x+1)(x+m)=0},
(1)若m=1,用列舉法表示集合A、B;
(2)若m≠1,且B⊆A,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.一個紅色的棱長是3cm的正方體,將其適當分割成棱長為1cm的小正方體,則三面涂色的小正方體有( 。
A.6個B.8個C.16個D.27個

查看答案和解析>>

同步練習冊答案