【題目】已知函數(shù)f(x)對一切x,y∈R都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知a∈R,設P:當 時,不等式f(x)+3<2x+a恒成立,Q:當x∈[﹣2,2]時,g(x)=f(x)﹣ax是單調函數(shù),如果記使P成立的實數(shù)a的取值的集合為A,使Q成立的實數(shù)a的取值的集合為B,求A∩RB.

【答案】
(1)解:∵f(x+y)﹣f(y)=x(x+2y+1),f(1)=0,取x=﹣1,y=1得f(0)﹣f(1)=﹣(﹣1+2+1),f(0)=﹣2
(2)解:取y=0,得f(x)﹣f(0)=x(x+1),故f(x)=x2+x﹣2
(3)解:(i)當 時,不等式f(x)+3<2x+a恒成立,即x2﹣x+1<a恒成立

記h(x)=x2﹣x+1,對稱軸 ,h(x)max=h(0)=1,

所以a>1,即A=(1,+∞)

(ii)g(x)=x2+(1﹣a)x﹣2,對稱軸: ,

由于x∈[﹣2,2]時,g(x)是單調函數(shù),所以

即A=(﹣∞,﹣3]∪[5,+∞),所以CRB=(﹣3,5),A∩CRB=(1,5)


【解析】(1)令x=﹣1,y=1,利用f(x+y)﹣f(y)=x(x+2y+1),即可求得f(0)的值;(2)令y=0,則f(x)﹣f(0)=x(x+1),結合f(0)=﹣2,可求f(x)的解析式;(3)不等式f(x)+3<2x+a,即x2+x﹣2+3<2x+a,即x2﹣x+1<a,從而可得A,根據(jù)g(x)在[﹣2,2]上是單調函數(shù),可求B,從而可求A∩CRB.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某同學在求函數(shù)y=lgx和 的圖象的交點時,計算出了下表所給出的函數(shù)值,則交點的橫坐標在下列哪個區(qū)間內(

x

2

2.125

2.25

2.375

2.5

2.625

2.75

2.875

3

lgx

0.301

0.327

0.352

0.376

0.398

0.419

0.439

0.459

0.477

0.5

0.471

0.444

0.421

0.400

0.381

0.364

0.348

0.333


A.(2.125,2,25)
B.(2.75,2.875)
C.(2.625,2.75)
D.(2.5,2.625)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,則函數(shù) 的定義域為(
A.[0,+∞)
B.[0,16]
C.[0,4]
D.[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)為偶函數(shù)且圖象經(jīng)過原點,其導函數(shù)的圖象過點

(1)求函數(shù)的解析式;

(2)設函數(shù),其中m為常數(shù),求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,
(1)求f(x)的解析式及定義域;
(2)求f(x)的值域;
(3)若方程f(x)=a2﹣3a+3有實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直角坐標平面內的兩點P、Q滿足條件:
①P、Q都在函數(shù)y=f(x)的圖象上;
②P、Q關于原點對稱,則稱點對[P,Q]是函數(shù)y=f(x)的一對“友好點對”(點對[P,Q]與[Q,P]看作同一對“友好點對”),
已知函數(shù)f(x)= ,則此函數(shù)的“友好點對”有(
A.0對
B.1對
C.2對
D.3對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+bx+c,其圖象與y軸的交點為(0,1),且滿足f(1﹣x)=f(1+x).

(1)求f(x);

(2)設 ,m0,求函數(shù)g(x)在[0m]上的最大值;

(3)設h(x)=lnf(x),若對于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)過點 ,且離心率e為

(1)求橢圓E的方程;
(2)設直線x=my﹣1(m∈R)交橢圓E于A,B兩點,判斷點G 與以線段AB為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近幾年出現(xiàn)各種食品問題,食品添加劑引起血脂增高、血壓增高、血糖增高等疾病為了解三高疾病是否與性別有關,醫(yī)院隨機對入院的60人進行了問卷調查,得到了如下的列聯(lián)表:

患三高疾病

不患三高疾病

合計

6

30

合計

36

1請將如圖的列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽人,其中女性抽多少人?

2為了研究三高疾病是否與性別有關,請計算出統(tǒng)計量,并說明你有多大的把握認為三高疾病與性別有關?

下面的臨界值表供參考:

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

參考公式,其中

查看答案和解析>>

同步練習冊答案