12.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.若asinA=bsinB+(c-b)sinC,bc=4,則△ABC的面積為(  )
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

分析 根據(jù)正弦定理化簡(jiǎn)已知的式子,由余弦定理求出cosA的值,再由內(nèi)角的范圍和特殊角的三角函數(shù)值求出A,結(jié)合條件和三角形的面積公式求出△ABC的面積.

解答 解:在△ABC中,因?yàn)閍sinA=bsinB+(c-b)sinC,
所以由正弦定理得a2=b2+(c-b)c,即b2+c2-a2=bc,
由余弦定理得,cosA=$\frac{^{2}{+c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
由0<A<π得,A=$\frac{π}{3}$,
又bc=4,所以△ABC的面積S=$\frac{1}{2}bcsinA$=$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
故選:C.

點(diǎn)評(píng) 本題考查正弦定理和余弦定理的綜合應(yīng)用,以及三角形的面積公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知全集I={1,2,3,4,5,6,7},集合M={3,5,6},集合N={1,3,4},則集合{2,7}=(  )
A.(∁IM)∩(∁IN)B.(∁IM)∪(∁IN)C.M∪ND.M∩(∁IN)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.一個(gè)透明的球形裝飾品內(nèi)放置了兩個(gè)公共底面的圓錐如圖,且這兩個(gè)圓錐的頂點(diǎn)和底面圓周都在這個(gè)球面上,如圖,已知圓錐底面面積是這個(gè)球面面積的$\frac{3}{16}$,則較大圓錐與較小圓錐的體積之比為3:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.圓O上兩點(diǎn)C,D在直徑AB的兩側(cè)(如圖甲),沿直徑AB將圓O折起形成一個(gè)二面角(如圖乙),若∠DOB的平分線交弧$\widehat{BD}$于點(diǎn)G,交弦BD于點(diǎn)E,F(xiàn)為線段BC的中點(diǎn).
(Ⅰ)證明:平面OGF∥平面CAD;
(Ⅱ)若二面角C-AB-D為直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直線FG與平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)橢圓C1:$\frac{{x}^{2}}{2}$+y2=1的右焦點(diǎn)為F,動(dòng)圓過(guò)點(diǎn)F且與直線x+1=0相切,M(3,0),設(shè)動(dòng)圓圓心的軌跡為C2
(1)求C2的方程;
(2)過(guò)F任作一條斜率為k1的直線l,l與C2交于A,B兩點(diǎn),直線MA交C2于另一點(diǎn)C,直線MB交C2于另一點(diǎn)D,若直線CD的斜率為k2,問(wèn),$\frac{{k}_{1}}{{k}_{2}}$是否為定值?若是,求出這個(gè)定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在鈍角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a=7,c=5,sinC=$\frac{{5\sqrt{3}}}{14}$,則△ABC的面積等于( 。
A.$\frac{{25\sqrt{3}}}{2}$B.$\frac{{15\sqrt{3}}}{2}$C.$\frac{{15\sqrt{3}}}{4}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四邊形ABCD為矩形,四邊形BCEF為直角梯形,BF∥CE,BF⊥BC,BF<CE,BF=2,AB=1,AD=$\sqrt{5}$.
(1)求證:BC⊥AF;
(2)求證:AF∥平面DCE;
(3)若二面角E-BC-A的大小為120°,求直線DF與平面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知在△ABC中,A,B,C所對(duì)的邊分別為a,b,c,R為△ABC外接圓的半徑,若a=1,$\frac{3}{2}$sin2B+$\frac{7}{2}$sin2C-sin2A=sinAsinBsinC,則R的值為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=lnx+$\frac{a}{x}$,a∈R.
(Ⅰ)當(dāng)a=e(e為自然對(duì)數(shù)的底數(shù))時(shí),求f(x)的極小值;
(Ⅱ)討論函數(shù)g(x)=f′(x)-$\frac{x}{3}$零點(diǎn)的個(gè)數(shù);
(Ⅲ)若對(duì)任意m>n>0,$\frac{f(m)-f(n)}{m-n}$<1恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案