9.若命題p:(x-m)(x-m-2)≤0;命題q:|4x-3|≤1,且p是q的必要非充分條件,則實(shí)數(shù)m的取值范圍是[-1,$\frac{1}{2}$].

分析 分別由命題命題p和命題q解出它們對(duì)變的不等式的解集,根據(jù)p是q的必要不充分條件,說(shuō)明q的解集是p解集的真子集,建立不等式組可得出實(shí)數(shù)m的取值范圍.

解答 解:命題p:(x-m)(x-m-2)≤0⇒m≤x≤m+2,
命題q:|4x-3|≤1⇒-1≤4x-3≤1⇒$\frac{1}{2}$≤x≤1,
∵p是q的必要非充分條件
∴[$\frac{1}{2}$,1]⊆[m,m+2]
∴$\left\{\begin{array}{l}{m≤\frac{1}{2}}\\{m+2≥1}\end{array}\right.$(等號(hào)不能同時(shí)成立)⇒-1≤m≤$\frac{1}{2}$
故答案為:$[-1,\frac{1}{2}]$.

點(diǎn)評(píng) 本題以不等式的解集為例,考查了充分條件與必要條件的判斷,屬于基礎(chǔ)題.解題時(shí)注意充分條件與必要條件之間范圍的包含關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.所給命題:
①菱形的兩條對(duì)角線(xiàn)互相平分的逆命題;
②{x|x2+1=0,x∈R}=∅或{0}=∅;
③對(duì)于命題:“p且q”,若p假q真,則“p且q”為假;
④有兩條邊相等且有一個(gè)內(nèi)角為60°是一個(gè)三角形為等邊三角形的充要條件.
其中為真命題的序號(hào)為③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若關(guān)于x的不等式$\frac{x-a}{x-b}>0$(a,b∈R)的解集為(-∞,1)∪(4,+∞),則a+b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,有一直角墻角,兩邊的長(zhǎng)度足夠長(zhǎng),若P處有一棵樹(shù)與兩墻的距離分別是4m和am(0<a<12),不考慮樹(shù)的粗細(xì).現(xiàn)用16m長(zhǎng)的籬笆,借助墻角圍成一個(gè)矩形花圃ABCD.設(shè)此矩形花圃的最大面積為u,若將這棵樹(shù)圍在矩形花圃?xún)?nèi),則函數(shù)u=f(a)(單位m2)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知在二項(xiàng)式${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展開(kāi)式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n的值,并求含x2項(xiàng)的系數(shù);
(2)求展開(kāi)式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)y=f(x)定義域是D,若對(duì)任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱(chēng)函數(shù)f(x)在D上為非減函數(shù),設(shè)函數(shù)y=f(x)在[0,1]上為非減函數(shù),滿(mǎn)足條件:①f(0)=0;②f($\frac{x}{3}$)=$\frac{1}{2}$f(x);③f(1-x)=1-f(x);則f($\frac{1}{3}$)+f($\frac{1}{2016}$)=$\frac{65}{128}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)集合A={x|-1≤x≤2},B={x|m-1≤x≤2m+1},已知B⊆A.
(1)當(dāng)x∈N時(shí),求集合A的子集的個(gè)數(shù);
(2)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知i為虛數(shù)單位,m,n都為實(shí)數(shù),且m(1+i)=1+ni,則($\frac{m+ni}{m-ni}$)2013=( 。
A.-1B.iC.1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.三棱錐P-ABC的兩側(cè)面PAB、PBC都是邊長(zhǎng)為2的正三角形,AC=$\sqrt{3}$,則二面角A-PB-C的大小為(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案