13.函數(shù)$y=sin(\frac{π}{4}x-\frac{π}{2})+3$的最小正周期是( 。
A.B.C.4D.8

分析 根據(jù)三角函數(shù)的周期公式進行求解即可.

解答 解:根據(jù)三角函數(shù)的周期公式得函數(shù)$y=sin(\frac{π}{4}x-\frac{π}{2})$的最小正周期是$T=\frac{2π}{{\frac{π}{4}}}=8$,
故選D.

點評 本題主要考查三角函數(shù)周期的計算,根據(jù)三角函數(shù)的周期公式是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.在等比數(shù)列{an}中,a1=3,a1+a2+a3=9,則a4+a5+a6等于( 。
A.9B.72C.9或72D.9或-72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=|ax-x2|+2b(a,b∈R).
(1)當a=-2,b=-$\frac{15}{2}$時,解方程f(2x)=0;
(2)當b=0時,若不等式f(x)≤2x在x∈[0,2]上恒成立,求實數(shù)a的取值范圍;
(3)若a為常數(shù),且函數(shù)f(x)在區(qū)間[0,2]上存在零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.一名心率過速患者服用某種藥物后心率立刻明顯減慢,之后隨著藥力的減退,心率再次慢慢升高,則自服藥那一刻起,心率關于時間的一個可能的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=tan(2x-$\frac{π}{4}$)的最小正周期是$\frac{π}{2}$;不等式f(x)>1的解集是$\{x|\frac{kπ}{2}+\frac{π}{4}<x<\frac{kπ}{2}+\frac{3π}{8},k∈Z\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列函數(shù)中,具有性質“對任意的x>0,y>0,函數(shù)f(x)滿足f(xy)=f(x)+f(y)”的函數(shù)是(  )
A.冪函數(shù)B.對數(shù)函數(shù)C.指數(shù)函數(shù)D.余弦函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是兩個相互垂直的單位向量,且$\overrightarrow a=-2\overrightarrow{e_1}-\overrightarrow{e_2}$,$\overrightarrow b=\overrightarrow{e_1}-λ\overrightarrow{e_2}$.
(Ⅰ)若$\overrightarrow a∥\overrightarrow b$,求λ的值;
(Ⅱ)若$\overrightarrow a⊥\overrightarrow b$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖是一個算法流程圖,則輸出的結果S為22.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知cosα,sinα是函數(shù)f(x)=x2-tx+t(t∈R)的兩個零點,則sin2α=(  )
A.2-2$\sqrt{2}$B.2$\sqrt{2}$-2C.$\sqrt{2}$-1D.1-$\sqrt{2}$

查看答案和解析>>

同步練習冊答案