函數(shù)y=log2(x2-3x-4)的單調(diào)增區(qū)間是
 
考點(diǎn):復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=x2-3x-4>0,求得函數(shù)的定義域,根據(jù)y=log2t,本題即求二次函數(shù)t的增區(qū)間,再利用二次函數(shù)的性質(zhì)可得函數(shù)t的增區(qū)間.
解答: 解:令t=x2-3x-4>0,求得x<-1,或x>4,故函數(shù)的定義域?yàn)椋?∞,-1)∪(4,+∞),
且y=log2t,
故本題即求二次函數(shù)t的增區(qū)間.
再利用二次函數(shù)的性質(zhì)可得函數(shù)t的增區(qū)間為(4,+∞),
故答案為:(4,+∞).
點(diǎn)評:本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某幼兒園根據(jù)部分同年齡段女童的身高數(shù)據(jù)繪制了頻率分布直方圖,其中身高的變化范圍是[96,106](單位:厘米),樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106].
(Ⅰ)求出x的值;
(Ⅱ)已知樣本中身高小于100厘米的人數(shù)是30,求出樣本總量N的數(shù)值;
(Ⅲ)根據(jù)頻率分布直方圖提供的數(shù)據(jù),求出樣本中身高大于或等于98厘米并且小于104厘米的學(xué)生人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知角α的終邊經(jīng)過點(diǎn)P(4,-3),求2sinα+cosα的值;
(2)已知角α的終邊經(jīng)過點(diǎn)P(4a,-3a)(a≠0),求2sinα+cosα的值;
(3)已知角α終邊上一點(diǎn)P與x軸的距離與y軸的距離之比為3:4,求2sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},滿足a7+a5=8,則此數(shù)列的前11項(xiàng)的和S11=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=xcosx在x=
π
3
處的切線斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=a+bi(a>0,b>0)滿足|z|=
2
,z2的虛部是2.
(1)求復(fù)數(shù)z;
(2)設(shè)z,z2,z-z2在復(fù)平面上的對應(yīng)點(diǎn)分別為A,B,C,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三段論“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù),y=(
1
2
x是指數(shù)函數(shù),所以y=(
1
2
x是增函數(shù)”,下列說法正確的是( 。
A、是一個(gè)正確的推理
B、大前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤
C、小前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤
D、推理形式錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α=
8
,則點(diǎn)P(sinα,tanα)所在的象限是(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算機(jī)是將信息轉(zhuǎn)換成二進(jìn)制數(shù)進(jìn)行處理的,二進(jìn)制即“逢2進(jìn)1”,如(1101)2表示二進(jìn)制數(shù),將它轉(zhuǎn)換成為十進(jìn)制形式是1×23+1×22+0×21+1×20=13,那么將二進(jìn)制數(shù)(
111…1
2002
2,轉(zhuǎn)換成十進(jìn)制形式是( 。
A、22002-2
B、22002-1
C、22001-2
D、22001-1

查看答案和解析>>

同步練習(xí)冊答案