【題目】若函數(shù)在其圖象上存在不同的兩點(diǎn),,其坐標(biāo)滿足條件:的最大值為0,則稱為“柯西函數(shù)”,
則下列函數(shù):
;
;
;
.
其中為“柯西函數(shù)”的個(gè)數(shù)為
A. 1B. 2C. 3D. 4
【答案】B
【解析】
問(wèn)題轉(zhuǎn)化為存在過(guò)原點(diǎn)的直線與的圖象有兩個(gè)不同的交點(diǎn),利用方程思想與數(shù)形結(jié)合思想,逐一判斷即可.
由柯西不等式得:對(duì)任意實(shí)數(shù)恒成立(當(dāng)且僅當(dāng)取等號(hào)),若函數(shù)在其圖象上存在不同的兩點(diǎn),其坐標(biāo)滿足條件:的最大值為0,則函數(shù)在其圖象上存在不同的兩點(diǎn),使得共線,即存在過(guò)原點(diǎn)的直線與的圖象有兩個(gè)不同的交點(diǎn):
對(duì)于① ,方程,即,不可能有兩個(gè)正根,故不存在;
對(duì)于②,,由圖可知不存在;
對(duì)于③,由圖可知存在;
對(duì)于④,由圖可知存在,
所以“柯西函數(shù)”的個(gè)數(shù)為2,故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線l的方程為y=(-a-1)x +a-2.
(1)求直線過(guò)定點(diǎn)A的坐標(biāo);
(2)若l在兩坐標(biāo)軸上的截距相等,求l的方程;
(3)若l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a、b、c為的三邊長(zhǎng),直線的方程為,圓.
(1)若為直角三角形,c為斜邊長(zhǎng),且直線與圓M相切.求c的值;
(2)已知為坐標(biāo)原點(diǎn),點(diǎn),,,,平行于ON的直線h與圓M相交于R,兩點(diǎn),且,求直線h的方程:
(3)若為正三角形,對(duì)于直線上任意一點(diǎn)P,在圓上總存在一點(diǎn),使得線段的長(zhǎng)度為整數(shù),求c的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù),若存在實(shí)數(shù)使得,則實(shí)數(shù)的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果有窮數(shù)列、、、、(為正整數(shù))滿足條件、、,即,我們稱其為“對(duì)稱數(shù)列”.例如,數(shù)列、、、、與數(shù)列、、、、、都是“對(duì)稱數(shù)列”.
(1)設(shè)是項(xiàng)的“對(duì)稱數(shù)列”,其中、、、是等差數(shù)列,且,,依次寫(xiě)出的每一項(xiàng);
(2)設(shè)是項(xiàng)的“對(duì)稱數(shù)列”,其中、、、是首項(xiàng)為,公比為的等比數(shù)列,求各項(xiàng)的和;
(3)設(shè)是項(xiàng)的“對(duì)稱數(shù)列”,其中、、、是首項(xiàng)為,公差為的等差數(shù)列,求前項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐的底面為直角梯形,,,,為正三角形.
(1)點(diǎn)為棱上一點(diǎn),若平面,,求實(shí)數(shù)的值;
(2)求點(diǎn)B到平面SAD的距離.
【答案】(1);(2)
【解析】試題分析:(1)由平面,可證,進(jìn)而證得四邊形為平行四邊形,根據(jù),可得;
(2)利用等體積法可求點(diǎn)到平面的距離.
試題解析:((1)因?yàn)?/span>平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因?yàn)?/span>,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點(diǎn).
因?yàn)?/span>,
.
(2)因?yàn)?/span> , ,
所以平面,
又因?yàn)?/span>平面,
所以平面平面,
平面平面,
在平面內(nèi)過(guò)點(diǎn)作直線于點(diǎn),則平面,
在和中,
因?yàn)?/span>,所以,
又由題知,
所以,
由已知求得,所以,
連接BD,則,
又求得的面積為,
所以由點(diǎn)B 到平面的距離為.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒(méi)有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元.
(1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在 時(shí),日平均派送量為單.
若將頻率視為概率,回答下列問(wèn)題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列,數(shù)學(xué)期望及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說(shuō)明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(Ⅰ)若,且是函數(shù)的一個(gè)極值,求函數(shù)的最小值;
(Ⅱ)若,求證:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家外賣(mài)公司,其送餐員的日工資方案如下:甲公司底薪70元,每單抽成2元;乙公司無(wú)底薪,40單以內(nèi)(含40單)的部分每單抽成4元,超出40單的部分每單抽成6元.假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 20 | 20 | 40 | 10 |
(1)現(xiàn)從甲公司記錄的這100天中隨機(jī)抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(2)若將頻率視為概率,回答以下問(wèn)題:
(i)記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;
(ii)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)大氣污染防治工作得到各級(jí)部門(mén)的重視,某企業(yè)現(xiàn)有設(shè)備下每日生產(chǎn)總成本(單位:萬(wàn)元)與日產(chǎn)量(單位:噸)之間的函數(shù)關(guān)系式為,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進(jìn)了除塵設(shè)備,每噸產(chǎn)品除塵費(fèi)用為萬(wàn)元,除塵后當(dāng)日產(chǎn)量時(shí),總成本.
(1)求的值;
(2)若每噸產(chǎn)品出廠價(jià)為59萬(wàn)元,試求除塵后日產(chǎn)量為多少時(shí),每噸產(chǎn)品的利潤(rùn)最大,最大利潤(rùn)為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com