若(x2-
1
ax
9的展開式中x9的系數(shù)為-
21
2
,則
a
0
sinxdx的值等于( 。
A、1-cos2
B、2-cos1
C、cos2-1
D、1+cos2
分析:由(x2-
1
ax
9的展開式中x9的系數(shù)為-
21
2
求得a的最值,然后由微積分基本定理求
a
0
sinxdx的值.
解答:解:由Tr+1=
C
r
9
(x2)9-r(-
1
ax
)r
=(-
1
a
)r
C
r
9
x18-3r
,
取18-3r=9,得r=3.
(-
1
a
)3
C
3
9
=-
21
2
,解得:a=2.
a
0
sinxdx=
2
0
sinxdx=-cos
x|
2
0
=1-cos2.
故選:A.
點(diǎn)評:本題考查了二項式系數(shù)的性質(zhì),考查了定積分,正確寫出二項展開式的通項是解答該題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(x2-
1
ax
)9(a∈R)
的展開式中x9的系數(shù)為-
21
2
,則
a
0
sinxdx
的值為
1-cos2
1-cos2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x2-
1
ax
)9(a∈R)
的展開式中x9的系數(shù)是-
21
2

(1)求展開式中的常數(shù)項;
(2)求
a
0
(sinx+2sin2
x
2
)dx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江模擬)若(x2-
1
ax
)9 (a∈R)
展開式中x9的系數(shù)為-
21
2
,則常數(shù)a=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•靜安區(qū)一模)若二項式(x2-
1
ax
9
的展開式中,x9的系數(shù)為-
21
2
,則常數(shù)a的值為
2
2

查看答案和解析>>

同步練習(xí)冊答案