精英家教網 > 高中數學 > 題目詳情
(19)數列{xn}由下列條件確定:x1=a>0,xn+1=xn+),nN.

(Ⅰ)證明:對n≥2,總有xn;

 

(Ⅱ)證明:對n≥2,總有xnxn+1.

(19)本小題主要考查數列、數列極限、不等式等基本知識,考查邏輯思維能力.

 

(Ⅰ)證明:由x1=a>0及xn+1=xn+),可歸納證明xn>0(沒有證明過程不扣分).

 

從而有xn+1=xn+)≥=nN),

 

所以,當n≥2時,xn成立.

 

(Ⅱ)證法一:當n≥2時,因為xn>0,xn+1=xn+),

 

所以xn+1xn=xn+)-xn=·≤0,

 

故當n≥2時,xnxn+1成立.

 

證法二:當n≥2時,因為xn>0,xn+1=xn+),

所以===1,

 

故當n≥2時,xnxn+1成立.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(19)數列{xn}由下列條件確定:x1=a>0,xn+1=xn+),nN.

(Ⅰ)證明:對n≥2,總有xn

 

(Ⅱ)證明:對n≥2,總有xnxn+1

 

(Ⅲ)若數列{xn}的極限存在,且大于零,求xn的值.

查看答案和解析>>

同步練習冊答案