【題目】如圖,點(diǎn)是以為直徑的圓上異于的一點(diǎn),直角梯形所在平面與圓所在平面垂直,且,.

1)證明:平面;

2)求點(diǎn)到平面的距離.

【答案】1)見(jiàn)解析;(2

【解析】

(1)取的中點(diǎn),證明,則平面平面,則可證平面.

(2)利用,是平面的高,容易求.,再求,則點(diǎn)到平面的距離可求.

解:(1)如圖:

的中點(diǎn),連接.

中,的中點(diǎn),的中點(diǎn),

平面平面,平面

在直角梯形中, ,且,

∴四邊形是平行四邊形,,同理平面

,故平面平面,

平面平面.

2是圓的直徑,點(diǎn)是圓上異于的一點(diǎn),

又∵平面平面,平面平面

平面,

可得是三棱錐的高線.

在直角梯形中,.

設(shè)到平面的距離為,則,即

由已知得

由余弦定理易知:,則

解得,即點(diǎn)到平面的距離為

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫(xiě)出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)若直線與曲線相交于,兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應(yīng)填入的條件是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,橢圓、,為橢圓的左、右頂點(diǎn).

設(shè)為橢圓的左焦點(diǎn),證明:當(dāng)且僅當(dāng)橢圓上的點(diǎn)在橢圓的左、右頂點(diǎn)時(shí),取得最小值與最大值.

若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為,求橢圓的標(biāo)準(zhǔn)方程.

若直線中所述橢圓相交于、兩點(diǎn)(、不是左、右頂點(diǎn)),且滿足,求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定合格”“不合格兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:合格5分,不合格0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下:

等級(jí)

不合格

合格

得分

頻數(shù)

6

24

1)由該題中頻率分布直方圖求測(cè)試成績(jī)的平均數(shù)和中位數(shù);

2)其他條件不變,在評(píng)定等級(jí)為合格的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測(cè)試得分低于80分的前提下,第2次抽取的測(cè)試得分仍低于80分的概率;

3)用分層抽樣的方法,從評(píng)定等級(jí)為合格不合格的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)X~N(μ1),Y~N(μ2,),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù).

1)求函數(shù)在點(diǎn)處的切線方程;

2)求函數(shù)上的最大值;

3)當(dāng)時(shí),試討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“五四青年節(jié)”到來(lái)之際,啟東中學(xué)將開(kāi)展一系列的讀書(shū)教育活動(dòng).為了解高二學(xué)生讀書(shū)教育情況,決定采用分層抽樣的方法從高二年級(jí)四個(gè)社團(tuán)中隨機(jī)抽取12名學(xué)生參加問(wèn)卷調(diào)査.已知各社團(tuán)人數(shù)統(tǒng)計(jì)如下:

(1)若從參加問(wèn)卷調(diào)查的12名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來(lái)自同一個(gè)社團(tuán)的概率;

(2)在參加問(wèn)卷調(diào)查的12名學(xué)生中,從來(lái)自三個(gè)社團(tuán)的學(xué)生中隨機(jī)抽取3名,用表示從社團(tuán)抽得學(xué)生的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)的基準(zhǔn)保費(fèi)為a元,在下一年續(xù)保時(shí),實(shí)行費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與車輛發(fā)生道路交通事故出險(xiǎn)的情況相聯(lián)系,最終保費(fèi)基準(zhǔn)保費(fèi)與道路交通事故相聯(lián)系的浮動(dòng)比率),具體情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

類別

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故

上浮

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮

為了解某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了100輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)如下表:

類型

數(shù)量

20

10

10

38

20

2

若以這100輛該品牌的投保類型的頻率代替一輛車投保類型的概率,則隨機(jī)抽取一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用的期望為(

A.aB.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案