【題目】某工廠每日生產(chǎn)一種產(chǎn)品噸,每日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,日銷售額為萬元,產(chǎn)品價格隨著產(chǎn)量變化而有所變化,經(jīng)過一段時間的產(chǎn)銷,得到了,的一組統(tǒng)計數(shù)據(jù)如下表:
(1)請判斷與中,哪個模型更適合刻畫,之間的關(guān)系?可從函數(shù)增長趨勢方面給出簡單的理由;
(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并估計當(dāng)日產(chǎn)量時,日銷售額是多少?
,,
,.
線性回歸方程中,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(2)已知正數(shù)滿足:存在,使得成立.試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)討論函數(shù)極值點(diǎn)的個數(shù),并說明理由;
(2)若, 恒成立,求的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,.
(1)當(dāng)時,判斷曲線與曲線的位置關(guān)系;
(2)當(dāng)曲線上有且只有一點(diǎn)到曲線的距離等于時,求曲線上到曲線距離為的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,,,,,平面,.
()求二面角的正弦值.
()設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)在復(fù)數(shù)范圍內(nèi)解方程(為虛數(shù)單位)
(2)設(shè)是虛數(shù),是實(shí)數(shù),且
(i)求的值及的實(shí)部的取值范圍;
(ii)設(shè),求證:為純虛數(shù);
(iii)在(ii)的條件下求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2,AD=,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線BC與MD所成角的余弦值;
(Ⅲ)求直線CD與平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面.
(1)證明:平面;
(2)過點(diǎn)作一平行于平面的截面,畫出該截面,說明理由,并求夾在該截面與平面之間的幾何體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com