已知函數(shù),函數(shù)與函數(shù)圖像關(guān)于軸對稱.
(1)當(dāng)時,求的值域及單調(diào)遞減區(qū)間;
(2)若,值.

(1)當(dāng)時,的值域為,單調(diào)遞減區(qū)間為;
(2).

解析試題分析:(1)先將函數(shù)的解析式進行化簡,化簡為,利用計算出的取值范圍,再結(jié)合正弦曲線確定函數(shù)的值域,對于函數(shù)在區(qū)間上的單調(diào)區(qū)間的求解,先求出函數(shù)上的單調(diào)遞減區(qū)間,然后和定義域取交集即得到函數(shù)在區(qū)間上的單調(diào)遞減區(qū)間;(2)利用等式計算得出的值,然后利用差角公式將角湊成的形式,結(jié)合兩角差的正弦公式進行計算,但是在求解的時候計算時,利用同角三角函數(shù)的基本關(guān)系時需要考慮角的取值范圍.
試題解析:(1)
            2分
圖像關(guān)于軸對稱,得
當(dāng)時,得,得   4分
單調(diào)遞減區(qū)間滿足,得
,得,又單調(diào)遞減區(qū)間為          7分
(2)由(1)知
,由于      8分
10分

                           13分
考點:1.誘導(dǎo)公式;2.同角三角函數(shù)的基本關(guān)系;3.兩角差的正弦公式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的最大值是1,其圖像經(jīng)過點。
(1)求的解析式;
(2)已知,且的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若,求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中,角的頂點與坐標(biāo)原點重合,始邊與軸非負半軸重合,終邊經(jīng)過點,且.
(1)若點的坐標(biāo)為(-),求的值;
(2)若點為平面區(qū)域上的一個動點,試確定角的取值范圍,并求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,
(1)設(shè),寫出函數(shù)的最小正周期;并求函數(shù)的單調(diào)區(qū)間;
(2)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的部分圖象如圖所示.

(1)試確定函數(shù)的解析式;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若存在,使f(x0)=1,求x0的值;
(2)設(shè)條件p:,條件q:,若p是q的充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,函數(shù)·,且最小正周期為
(1)求的值;
(2)設(shè),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標(biāo)系中,角的頂點是原點,始邊與軸正半軸重合,終邊交單位圓于點,且.將角的終邊按逆時針方向旋轉(zhuǎn),交單位圓于點.記

(Ⅰ)若,求;
(Ⅱ)分別過軸的垂線,垂足依次為.記△ 的面積為,△的面積為.若,求角的值.

查看答案和解析>>

同步練習(xí)冊答案