考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的運(yùn)算
專題:三角函數(shù)的求值
分析:(1)由向量和三角函數(shù)的運(yùn)算可得f(x)=sin(x-
)+
,由2kπ-
≤x-
≤2kπ+
解不等式可得單調(diào)遞增區(qū)間,同理可得單調(diào)遞減區(qū)間;
(2)由已知可得sin(x-
)=
,進(jìn)而可得cos(x-
)=
,代入cosx=
cos(x-
)-
sin(x-
)計(jì)算可得.
解答:
解:(1)∵
=(cos
,-1),
=(
sin
,cos
2),
∴f(x)=
•
+1=
sin
cos
-cos
2+1
=
sinx-
cosx
+=sin(x-
)+
,
由2kπ-
≤x-
≤2kπ+
可得2kπ-
≤x≤2kπ+
,
∴f(x)的單調(diào)遞增區(qū)間為:[2kπ-
,2kπ+
],k∈Z,
同理可得單調(diào)遞減區(qū)間為:[2kπ+
,2kπ+
],k∈Z,
(2)由(1)知f(x)=sin(x-
)+
=
,
∴sin(x-
)=
,又∵x∈[0,
],
∴x-
∈[-
,
],∴cos(x-
)=
,
∴cosx=cos[(x-
)+
]
=
cos(x-
)-
sin(x-
)
=
×-×=
點(diǎn)評:本題考查三角函數(shù)的恒等變換,涉及向量的數(shù)量積和三角函數(shù)的單調(diào)性,屬中檔題.