若對于一切正實數(shù)x不等式>a恒成立,則實數(shù)a的取值范圍是________

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設不等式組
x>0
y>0
y≤-nx+3n
所表示的平面區(qū)域為Dn,記Dn內的格點(格點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為f(n),(n∈N*
(1)求f(1),f(2)的值及f(n)的表達式;
(2)記Tn=
f(n)•f(n+1)
2n
,試比較Tn與Tn+1的大。蝗魧τ谝磺械恼麛(shù)n,總有Tn≤m成立,求實數(shù)m的取值范圍;
(3)設Sn為數(shù)列bn的前n項的和,其中bn=2f(n),問是否存在正整數(shù)n,t,使
Sn+tbn
Sn+1-tbn+1
1
16
成立?若存在,求出正整數(shù)n,t;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)的定義域為(0,+∞),且對任意的正實數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當x>1時,f(x)>0.
(1)求f(
1
2
)
的值,試判斷y=f(x)在(0,+∞)上的單調性,并加以證明;
(2)一個各項均為正數(shù)的數(shù)列{an},它的前n項和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求數(shù)列{an}的通項公式;
(3)在(2)的條件下,是否存在實數(shù)M,使2na1a2an≥M•
2n+3
•(2a1-1)•(2a2-1)…(2an-1)
對于一切正整數(shù)n均成立?若存在,求出M的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

.設函數(shù)y=f(x)的定義域為(0,+∞),且對任意的正實數(shù)x, y,均有

f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當x>1時,f(x)>0。

   (1)求f(1), f()的值;

   (2)試判斷y=f(x)在(0,+∞)上的單調性,并加以證明;

   (3)一個各項均為正數(shù)的數(shù)列{a??n}滿足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是數(shù)列{an}的前n項和,求數(shù)列{an}的通項公式;

   (4)在(3)的條件下,是否存在正數(shù)M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)對于一切n∈N*均成立?若存在,求出M的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)y=f(x)的定義域為(0,+∞),且對任意的正實數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當x>1時,f(x)>0.
(1)求數(shù)學公式的值,試判斷y=f(x)在(0,+∞)上的單調性,并加以證明;
(2)一個各項均為正數(shù)的數(shù)列{an},它的前n項和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求數(shù)列{an}的通項公式;
(3)在(2)的條件下,是否存在實數(shù)M,使數(shù)學公式對于一切正整數(shù)n均成立?若存在,求出M的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶市合川區(qū)大石中學高三(上)第四次月考數(shù)學試卷(理科)(解析版) 題型:解答題

設函數(shù)y=f(x)的定義域為(0,+∞),且對任意的正實數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當x>1時,f(x)>0.
(1)求的值,試判斷y=f(x)在(0,+∞)上的單調性,并加以證明;
(2)一個各項均為正數(shù)的數(shù)列{an},它的前n項和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求數(shù)列{an}的通項公式;
(3)在(2)的條件下,是否存在實數(shù)M,使對于一切正整數(shù)n均成立?若存在,求出M的范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案