【題目】在直角坐標系xOy中,已知圓C: (θ為參數(shù)),點P在直線l:x+y﹣4=0上,以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系.
(I)求圓C和直線l的極坐標方程;
(II)射線OP交圓C于R,點Q在射線OP上,且滿足|OP|2=|OR||OQ|,求Q點軌跡的極坐標方程.
【答案】解:(Ⅰ)圓C: (θ為參數(shù)),可得直角坐標方程:x2+y2=4,∴圓C的極坐標方程ρ=2.
點P在直線l:x+y﹣4=0上,直線l的極坐標方程ρ= .
(Ⅱ)設(shè)P,Q,R的極坐標分別為(ρ1,θ),(ρ,θ),(ρ2,θ),
因為 ,
又因為|OP|2=|OR||OQ|,即 ,∴ ,
∴ρ= .
【解析】(Ⅰ)圓C: (θ為參數(shù)),可得直角坐標方程:x2+y2=4,利用互化公式可得圓C的極坐標方程.點P在直線l:x+y﹣4=0上,利用互化公式可得直線l的極坐標方程.(Ⅱ)設(shè)P,Q,R的極坐標分別為(ρ1,θ),(ρ,θ),(ρ2,θ),由 ,又|OP|2=|OR||OQ|,即可得出.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)設(shè)a>1,試討論f(x)單調(diào)性;
(2)設(shè)g(x)=x2﹣2bx+4,當 時,任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知球內(nèi)接四棱錐P﹣ABCD的高為3,AC,BC相交于O,球的表面積為 ,若E為PC中點.
(1)求證:OE∥平面PAD;
(2)求二面角A﹣BE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,設(shè)點M(x0 , y0)是橢圓C: +y2=1上一點,從原點O向圓M:(x﹣x0)2+(y﹣y0)2=r2作兩條切線分別與橢圓C交于點P,Q.直線OP,OQ的斜率分別記為k1 , k2
(1)若圓M與x軸相切于橢圓C的右焦點,求圓M的方程;
(2)若r= ,①求證:k1k2=﹣ ;②求OPOQ的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,D是直角△ABC斜邊BC上一點,AC= DC.
(I)若∠DAC=30°,求角B的大。
(Ⅱ)若BD=2DC,且AD=2 ,求DC的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖給出的是計算 的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( )
A.i≤100
B.i>100
C.i>50
D.i≤50
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的右焦點為F(2,0),M為橢圓的上頂點,O為坐標原點,且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1 , k2 , 且k1+k2=8,證明:直線AB過定點( ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)).以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系.
(1)寫出曲線C的極坐標方程;
(2)設(shè)點M的極坐標為( ),過點M的直線l與曲線C相交于A,B兩點,若|MA|=2|MB|,求AB的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,用35個單位正方形拼成一個矩形,點P1、P2、P3、P4以及四個標記為“▲”的點在正方形的頂點處,設(shè)集合Ω={P1 , P2 , P3 , P4},點P∈Ω,過P作直線lP , 使得不在lP上的“▲”的點分布在lP的兩側(cè).用D1(lP)和D2(lP)分別表示lP一側(cè)和另一側(cè)的“▲”的點到lP的距離之和.若過P的直線lP中有且只有一條滿足D1(lP)=D2(lP),則Ω中所有這樣的P為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com