對(duì)于三次函數(shù),定義是的導(dǎo)函數(shù)的導(dǎo)函數(shù),若方程有實(shí)數(shù)解,則稱(chēng)點(diǎn)為函數(shù)的“拐點(diǎn)”,可以證明,任何三次函數(shù)都有“拐點(diǎn)”,任何三次函數(shù)都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心,請(qǐng)你根據(jù)這一結(jié)論判斷下列命題:
①任意三次函數(shù)都關(guān)于點(diǎn)對(duì)稱(chēng):
②存在三次函數(shù)有實(shí)數(shù)解,點(diǎn)為函數(shù)的對(duì)稱(chēng)中心;
③存在三次函數(shù)有兩個(gè)及兩個(gè)以上的對(duì)稱(chēng)中心;
④若函數(shù),則:
其中正確命題的序號(hào)為_(kāi)_ __(把所有正確命題的序號(hào)都填上).
①②④
解析試題分析:∵f(x)=ax3+bx2+cx+d(a≠0),∴f′(x)=3ax2+2bx+c,f''(x)=6ax+2b,
∵f″()=6a×()+2b=0,∴任意三次函數(shù)都關(guān)于點(diǎn)對(duì)稱(chēng),即①正確;
∵任何三次函數(shù)都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心,
∴存在三次函數(shù)f′(x)=0有實(shí)數(shù)解x0,點(diǎn)(x0,f(x0))為y=f(x)的對(duì)稱(chēng)中心,即②正確;
任何三次函數(shù)都有且只有一個(gè)對(duì)稱(chēng)中心,故③不正確;
∵,∴g′(x)=x2-x,g''(x)=2x-1,
令g''(x)=2x-1=0,得x=,
∵,
∴函數(shù)的對(duì)稱(chēng)中心是(,-),
∴g(x)+(g(1-x)=-1,
∴,故④正確.
故答案為:①②④.
考點(diǎn):學(xué)習(xí)能力,導(dǎo)數(shù)的計(jì)算,函數(shù)的圖象的對(duì)稱(chēng)性。
點(diǎn)評(píng):中檔題,對(duì)于“新定義”問(wèn)題,關(guān)鍵是理解題意,注意轉(zhuǎn)化成“熟悉”的問(wèn)題,按所學(xué)知識(shí)、方法,加以解答。本題難度較大。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知函數(shù),下列命題:
①的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/36/8/jx7zl.png" style="vertical-align:middle;" />;
②是奇函數(shù);
③在單調(diào)遞增;
④若實(shí)數(shù)a,b滿足,則;
⑤設(shè)函數(shù)在的最大值為M,最小值為m,則M+m=2013
其中真命題的序號(hào)是 (寫(xiě)出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)有 對(duì).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com