如圖平面四邊形ABCD中,AB=AD=a,BC=CD=BD 設(shè)∠BAD=θ
(I)將四邊形ABCD的面積S表示為θ的函數(shù).
(II)求四邊形ABCD面積S的最大值及此時(shí)θ值.
分析:(I)在△BAD中,由余弦定理求BD,從而可求四邊形ABCD的面積;
(II)將四邊形的面積化簡(jiǎn),確定角的范圍,利用三角函數(shù)的圖象,即可求得四邊形ABCD面積S的最大值.
解答:解:(I)在△BAD中,由余弦定理可得BD=
a2+a2-2a2cosθ
=
2a2(1-cosθ)

∴四邊形ABCD的面積S=
1
2
a2sinθ
+
3
4
×[2a2(1-cosθ)]=
3
2
a2
+a2
1
2
sinθ-
3
2
cosθ

=
3
2
a2
+a2sin(θ-
π
3
)(0<θ<π)
(II)∵0<θ<π,∴-
π
3
<θ-
π
3
3

-
3
2
<sin(θ-
π
3
)≤1
當(dāng)且僅當(dāng)θ-
π
3
=
π
2
,即θ=
6
時(shí),sin(θ-
π
3
)取得最大值1
四邊形ABCD面積S的最大值為
3
2
a2
+a2,此時(shí)θ=
6
點(diǎn)評(píng):本題考查三角函數(shù)知識(shí),考查余弦定理的運(yùn)用,考查三角函數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A-BCD.則在三棱錐A-BCD中,下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD是直角梯形,∠ABC=∠BAD=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
12

(1)求SC與平面ASD所成的角余弦;
(2)求平面SAB和平面SCD所成角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD中,△ABC為正三角形,AD=AB=2,BD=2
3
,AC與BD交于O點(diǎn).將△ABC沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為θ,且P點(diǎn)在平面ABCD內(nèi)的射影落在△ABC內(nèi).
(Ⅰ)求證:AC⊥平面PBD;
(Ⅱ)若θ=
π
3
時(shí),求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭一模)如圖,四邊形DCBE為直角梯形,∠DCB=90°,DE∥CB,DE=1,BC=2,又AC=1,∠ACB=120°,CD⊥AB,直線AE與直線CD所成角為60°.
(Ⅰ)求證:平面ACD⊥平面ABC;
(Ⅱ)求BE與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,△ABC在平面α外,AB∩α=P,BC∩α=Q,AC∩α=R,求證:P,Q,R三點(diǎn)共線.
(2)如圖2,空間四邊形ABCD中,E,F(xiàn)分別是AB和CB上的點(diǎn),G,H分別是CD和AD上的點(diǎn),且EH與FG相交于點(diǎn)K.求證:EH,BD,F(xiàn)G三條直線相交于同一點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案