【題目】對于函數(shù),若存在實數(shù)m,使得為R上的奇函數(shù),則稱是位差值為m的“位差奇函數(shù)”.
(1)判斷函數(shù)和是否是位差奇函數(shù),并說明理由;
(2)若是位差值為的位差奇函數(shù),求的值;
(3)若對于任意,都不是位差值為m的位差奇函數(shù),求實數(shù)t的取值范圍.
【答案】(1) 對于任意有為位差奇函數(shù), 不存在有為位差奇函數(shù).(2) ;(3)
【解析】
(1)根據(jù)題意計算與,判斷為奇函數(shù)的條件即可.
(2)根據(jù)是位差值為的位差奇函數(shù)可得為R上的奇函數(shù)計算的值即可.
(3)計算為奇函數(shù)時滿足的關系,再根據(jù)對于任意都不是位差值為m的位差奇函數(shù)求解恒不成立問題即可.
(1)由,所以為奇函數(shù).
故對于任意有為位差奇函數(shù).
又,設.
此時,若為奇函數(shù)則恒成立.與假設矛盾,故不存在有為位差奇函數(shù).
(2) 由是位差值為的位差奇函數(shù)可得,為R上的奇函數(shù).即為奇函數(shù).
即,.
(3)設
.由題意對任意的均不恒成立.
此時
即對任意的不恒成立.
故在無解.又,故.
故
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,直線過點,且與拋物線交于、兩點,.
(1)求的取值范圍;
(2)若,點的坐標為,直線與拋物線的另一個交點為,直線與拋物線的另一個交點為,直線與軸交于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系上,有一點列,設點的坐標(),其中. 記,,且滿足().
(1)已知點,點滿足,求的坐標;
(2)已知點,(),且()是遞增數(shù)列,點在直線:上,求;
(3)若點的坐標為,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年6月,國內的運營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務用了不到20年的時間,完成了技術上的飛躍,躋身世界先進水平.為了解高校學生對的消費意愿,2019年8月,從某地在校大學生中隨機抽取了1000人進行調查,樣本中各類用戶分布情況如下:
用戶分類 | 預計升級到的時段 | 人數(shù) |
早期體驗用戶 | 2019年8月至2019年12月 | 270人 |
中期跟隨用戶 | 2020年1月至2021年12月 | 530人 |
后期用戶 | 2022年1月及以后 | 200人 |
我們將大學生升級時間的早晚與大學生愿意為套餐支付更多的費用作比較,可得出下圖的關系(例如早期體驗用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗用戶的).
(1)從該地高校大學生中隨機抽取1人,估計該學生愿意在2021年或2021年之前升級到的概率;
(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學期望;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)若,直線與曲線相交于兩點,求;
(2)若,求曲線上的點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AD=2.
(1)求該四棱錐P-ABCD的表面積和體積;
(2)求該四棱錐P-ABCD內切球的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司在年終“尾牙”宴上對該公司年度的最佳銷售員工進行獎勵,已知員工一年以來的月銷售業(yè)績分別為:102,113,123,132,144,138,126,119,108,122,109,146.若該公司為最佳員工準備了相應的獎品,需要該員工通過抽獎游戲進行確定獎品金額,游戲規(guī)則如下:該員工需要從9張卡牌中不放回的抽取3張,其中1張卡牌的獎金為600元,4張卡牌的獎金均為400元,另外4張卡牌的獎金均為200元,所抽到的3張卡牌的金額之和便是該員工所獲得的獎品的最終價值.
(Ⅰ)請根據(jù)題意完善員工的業(yè)績的莖葉圖,并求出員工銷售業(yè)績的中位數(shù);
(Ⅱ)求的分布列以及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com