12.拋擲一枚均勻的硬幣4次,則恰有2次正面向上的概率(  )
A.$\frac{1}{2}$B.$\frac{1}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

分析 判斷事件是獨(dú)立重復(fù)試驗(yàn),然后求解即可.

解答 解:拋擲一枚均勻的硬幣4次,滿足獨(dú)立重復(fù)試驗(yàn),X~B(4,$\frac{1}{2}$),
則恰有2次正面向上的概率:${C}_{4}^{2}•(\frac{1}{2})^{4}$=$\frac{3}{8}$.
故選:C.

點(diǎn)評(píng) 本題考查獨(dú)立重復(fù)試驗(yàn)的應(yīng)用,基本知識(shí)的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在底面是菱形的四棱錐P-ABCD中,點(diǎn)E在PD上,且滿足PE:ED=2:1,PA=AB=2,PA⊥底面ABCD,∠ABC=60°
(1)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC,若存在,求出PF的長度.
(2)求二面角P-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一條河的兩岸平行,河水的流速為2m/s,一艘小船以10m/s的速度向垂直于對(duì)岸的方向行駛,求小船在靜水中的速度大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若長方體的一個(gè)頂點(diǎn)上三條棱長分別是1、1、2,且它的八個(gè)頂點(diǎn)都在同一球面上,則這個(gè)球的表面積是(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某學(xué)生記憶導(dǎo)數(shù)公式如下,其中錯(cuò)誤的一個(gè)是( 。
A.(${\frac{1}{x}}$)′=-$\frac{1}{x^2}$B.(ax)=axlnaC.(lnx)′=$\frac{1}{x}$D.(sinx)′=-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知復(fù)數(shù)z滿足z=$\frac{1+2i}{2-i}$,則|z|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=x2-(4a+1)x+3a2+3a的圖象與x軸交于A、B兩點(diǎn),若兩點(diǎn)間的距離等于2,則a的值為( 。
A.$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$或-$\frac{1}{2}$D.$\frac{3}{2}$或-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點(diǎn)為A(-1,0),右焦點(diǎn)為F2($\sqrt{3}$,0),則雙曲線的漸近線方程為(  )
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{2\sqrt{2}}{3}$,橢圓C的右焦點(diǎn)到直線x=$\frac{a}{e}$的距離為$\frac{\sqrt{2}}{4}$,橢圓C的下頂點(diǎn)為D.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過D點(diǎn)作兩條相互垂直的直線分別與橢圓C相交于點(diǎn)P,M.求證:直線PM經(jīng)過一定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案