【題目】如圖,邊長為4的正方形所在平面與正三角形所在平面互相垂直,,分別為,的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值.
【答案】(Ⅰ)見解析(Ⅱ)
【解析】
(I)根據(jù)題意,利用線面垂直、面面垂直的判定定理與面面垂直的性質(zhì)定理證明;
(Ⅱ)根據(jù)題意,分別以,,所在直線為軸、軸、軸,建立空間直角坐標(biāo)系,用向量法求解.
(Ⅰ)證明:設(shè)直線,交于點(diǎn),
∵,,
∴.
∴,則.
故,∴.
∵為的中點(diǎn),為正三角形,
∴.
又平面平面,平面平面,
∴平面,
∴,
∵,
∴平面,
又平面,
∴平面平面.
(Ⅱ)設(shè)的中點(diǎn)為,連接.∵平面平面,∴,,由(Ⅰ)知,.
以點(diǎn)為原點(diǎn),分別以,,所在直線為,,軸,建立空間直角坐標(biāo)系如圖所示,
則,,,,.
設(shè)平面的法向量為,又,,
∴,得取,得.
設(shè)直線與平面所成角為,,
∴,
故直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為2的正方形.平面,且.
(1)求證:平面平面.
(2)線段上是否存在一點(diǎn),使三棱錐的高若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為解決城市的擁堵問題,某城市準(zhǔn)備對(duì)現(xiàn)有的一條穿城公路MON進(jìn)行分流,已知穿城公路MON自西向東到達(dá)城市中心點(diǎn)O后轉(zhuǎn)向東北方向(即).現(xiàn)準(zhǔn)備修建一條城市高架道路L,L在MO上設(shè)一出入口A,在ON上設(shè)一出入口B.假設(shè)高架道路L在AB部分為直線段,且要求市中心O與AB的距離為10km.
(1)求兩站點(diǎn)A,B之間距離的最小值;
(2)公路MO段上距離市中心O30km處有一古建筑群C,為保護(hù)古建筑群,設(shè)立一個(gè)以C為圓心,5km為半徑的圓形保護(hù)區(qū).則如何在古建筑群C和市中心O之間設(shè)計(jì)出入口A,才能使高架道路L及其延伸段不經(jīng)過保護(hù)區(qū)(不包括臨界狀態(tài))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為原點(diǎn),左焦點(diǎn)為,離心率為,不與坐標(biāo)軸垂直的直線與橢圓交于兩點(diǎn).
(1)若為線段的中點(diǎn),求直線的方程.
(2)求點(diǎn)是直線上一點(diǎn),點(diǎn)在橢圓上,且滿足,設(shè)直線與直線的斜率分別為,問:是否為定值?若是,請(qǐng)求出的值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)若有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若,求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點(diǎn)則下列結(jié)論正確的是( )
A.點(diǎn)P到拋物線焦點(diǎn)的距離為
B.過點(diǎn)P作過拋物線焦點(diǎn)的直線交拋物線于點(diǎn)Q,則△OPQ的面積為
C.過點(diǎn)P與拋物線相切的直線方程為
D.過點(diǎn)P作兩條斜率互為相反數(shù)的直線交拋物線于M,N點(diǎn)則直線MN的斜率為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)a∈(0,1),是否存在實(shí)數(shù)λ,,使成立,若存在,求λ的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓交于不同的兩點(diǎn),線段的中點(diǎn)為,且直線與直線的斜率之積為.若直線與直線交于點(diǎn),與直線交于點(diǎn),且點(diǎn)為直線上一點(diǎn).
(1)求的軌跡方程;
(2)若為橢圓的上頂點(diǎn),直線與軸交點(diǎn),記表示面積,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春季,某出租汽車公同決定更換一批新的小汽車以代替原來報(bào)廢的出租車,現(xiàn)有A,B兩款車型,根據(jù)以這往這兩種租車車型的數(shù)據(jù),得到兩款出租車型使用壽命頻數(shù)表如表:
(1)填寫下表,并判斷是否有99%的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān)?
(2)司機(jī)師傅小李準(zhǔn)備在一輛開了4年的A型車和一輛開了4年的B型車中選擇,為了盡最大可能實(shí)現(xiàn)3年內(nèi)(含3年)不換車,試通過計(jì)算說明,他應(yīng)如何選擇.
參考公式:,其中n=a+b+c+d.
參考數(shù)據(jù):
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com