【題目】已知函數(shù),,其中a為常數(shù).

當(dāng)時,設(shè)函數(shù),判斷函數(shù)上是增函數(shù)還是減函數(shù),并說明理由;

設(shè)函數(shù),若函數(shù)有且僅有一個零點(diǎn),求實(shí)數(shù)a的取值范圍.

【答案】(1)見解析;(2),

【解析】

代入a的值,求出的解析式,判斷函數(shù)的單調(diào)性即可;

由題意把函數(shù)有且僅有一個零點(diǎn)轉(zhuǎn)化為有且只有1個實(shí)數(shù)根,通過討論a的范圍,結(jié)合二次函數(shù)的性質(zhì)得到關(guān)于a的不等式組,解出即可.

(1)由題意,當(dāng)時,,則,

因?yàn)?/span>,又由遞減,

所以遞增,

所以根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)單調(diào)遞增函數(shù);

,得,即,

若函數(shù)有且只有1個零點(diǎn),

則方程有且只有1個實(shí)數(shù)根,

化簡得,

有且只有1個實(shí)數(shù)根,

時,可化為,即,

此時,滿足題意,

當(dāng)時,由得:

,解得:

當(dāng)時,方程有且只有1個實(shí)數(shù)根,

此時,滿足題意,

當(dāng)時,

的零點(diǎn),則,解得:,

的零點(diǎn),則,解得:,

函數(shù)有且只有1個零點(diǎn),所以,

綜上,a的范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是(

A.90cm2
B.129cm2
C.132cm2
D.138cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4個互異的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的一個上界.已知函數(shù), .

(1)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;

(3)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5名師生站成一排照相留念,其中教師1人,男生2人,女生2.

(1)求兩名女生相鄰而站的概率;

(2)求教師不站中間且女生不站兩端的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高一年級共有20個班,為參加全市的鋼琴比賽,調(diào)查了各班中會彈鋼琴的人數(shù),并以組距為5將數(shù)據(jù)分組成時,作出如下頻率分布直方圖.

(Ⅰ)由頻率分布直方圖估計(jì)各班中會彈鋼琴的人數(shù)的平均值;

(Ⅱ)若會彈鋼琴的人數(shù)為的班級作為第一備選班級,會彈鋼琴的人數(shù)為的班級作為第二備選班級,現(xiàn)要從這兩類備選班級中選出兩個班參加市里的鋼琴比賽,求這兩類備選班級中均有班級被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)

的最大值為0,記,求的值;

當(dāng)時,記不等式的解集為M,求函數(shù)的值域是自然對數(shù)的底數(shù);

當(dāng)時,討論函數(shù)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足 an≤an+1≤3an , n∈N* , a1=1.
(1)若a2=2,a3=x,a4=9,求x的取值范圍;
(2)設(shè){an}是公比為q的等比數(shù)列,Sn=a1+a2+…an , 若 Sn≤Sn+1≤3Sn , n∈N* , 求q的取值范圍.
(3)若a1 , a2 , …ak成等差數(shù)列,且a1+a2+…ak=1000,求正整數(shù)k的最大值,以及k取最大值時相應(yīng)數(shù)列a1 , a2 , …ak的公差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在[1,+∞)上的函數(shù)f(x)= 給出下列結(jié)論: ①函數(shù)f(x)的值域?yàn)椋?,8];
②對任意的n∈N,都有f(2n)=23n
③存在k∈( , ),使得直線y=kx與函數(shù)y=f(x)的圖象有5個公共點(diǎn);
④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正確命題的序號是(
A.①②③
B.①③④
C.①②④
D.②③④

查看答案和解析>>

同步練習(xí)冊答案