5.對一切正整數(shù)n,不等式an+2a<n+1恒成立,則實數(shù)a的范圍是(-∞,$\frac{2}{3}$).

分析 分離變量,利用函數(shù)的最值求解即可.

解答 解:由不等式an+2a<n+1恒成立,得
a<$\frac{n+1}{n+2}$=$1-\frac{1}{n+2}$恒成立,只需a<1-$\frac{1}{n+2}$的最小值,而對一切正整數(shù)n,$({1-\frac{1}{n+2})}_{min}$=$\frac{2}{3}$,
故a$<\frac{2}{3}$.
故答案為:(-∞,$\frac{2}{3}$).

點評 本題考查函數(shù)恒成立的應(yīng)用,分離變量的方法,函數(shù)的最值的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線($\sqrt{6}$sinθ)x+$\sqrt{3}$y-2=0的傾斜角為θ(θ≠0),則θ=$\frac{3π}{4}$(或135°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.sinθ+cosθ=-$\frac{\sqrt{10}}{5}$,θ是第二象限的角,則tanθ( 。
A.-3B.-2C.-$\frac{1}{3}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=ax2-2ax+b(a≠0)在閉區(qū)間[1,2]上有最大值0,最小值-1,則a,b的值為( 。
A.a=1,b=0B.a=-1,b=-1
C.a=1,b=0或a=-1,b=-1D.以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={3,5,6,8},B={4,5,7,8},則A∩B等于( 。
A.{5}B.{5,8}C.{3,7,8}D.{3,4,5,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出以下四個命題,
①如果平面α,β,γ滿足α⊥γ,β⊥γ,α∩β=l,則l⊥γ
②若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α
③已知a,b是異面直線,α,β為兩個平面,若a?α,a∥β,b?β,b∥α,則α∥β
④一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線
其中正確命題的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.f(x)是定義在非零實數(shù)集上的函數(shù),f′(x)為其導(dǎo)函數(shù),且x>0時,xf′(x)-f(x)<0,記a=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,b=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,c=$\frac{f(0.{2}^{2})}{0.{2}^{2}}$,則( 。
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知a>0,命題p:|a-m|<$\frac{1}{2}$,命題q:橢圓$\frac{x^2}{a^2}$+y2=1的離心率e滿足e∈(${\frac{{\sqrt{3}}}{2}$,$\frac{{2\sqrt{2}}}{3}}$).
(1)若q是真命題,求實數(shù)a取值范圍;
(2)若p是q的充分條件,且p不是q的必要條件,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“p∨q是真命題”是“¬p是假命題”的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案