【題目】下列敘述錯(cuò)誤的是( )
A.已知直線和平面,若點(diǎn),點(diǎn)且,,則
B.若三條直線兩兩相交,則三條直線確定一個(gè)平面
C.若直線不平行于平面,且,則內(nèi)的所有直線與都不相交
D.若直線和不平行,且,,,則l至少與,中的一條相交
【答案】BC
【解析】
根據(jù)線線關(guān)系、線面關(guān)系的性質(zhì)定理及判定定理判斷可得;
解:由公理一,可知A正確;
若三條直線相交于一點(diǎn),則三條直線不能唯一確定一個(gè)平面,故B錯(cuò)誤;
若直線不平行于平面,且,則與平面相交,設(shè)交點(diǎn)為,則平面中所有過點(diǎn)的直線均與直線相交,故C錯(cuò)誤;
若直線和不平行,且,,,
所以直線和異面
與共面,與共面,
可以與平行或相交,可以與平行或相交,
但是一定不能同時(shí)平行,若兩條直線與同時(shí)平行,
則和平行,與兩條直線是異面直線矛盾,
至少與和中的一條相交,故D正確;
故選:BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某早餐店對(duì)一款新口味的酸奶進(jìn)行了一段時(shí)間試銷,定價(jià)為5元/瓶.酸奶在試銷售期間足量供應(yīng),每天的銷售數(shù)據(jù)按照[15,25],(25,35],(35,45],(45,55]分組,得到如下頻率分布直方圖,以不同銷量的頻率估計(jì)概率.試銷結(jié)束后,這款酸奶正式上市,廠家只提供整箱批發(fā):大箱每箱50瓶,批發(fā)成本85元;小箱每箱30瓶,批發(fā)成本65元.由于酸奶保質(zhì)期短,當(dāng)天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發(fā)一箱(計(jì)算時(shí)每個(gè)分組取中間值作為代表,比如銷量為(45,55]時(shí)看作銷量為50瓶).
(1)設(shè)早餐店批發(fā)一大箱時(shí),當(dāng)天這款酸奶的利潤為隨機(jī)變量X,批發(fā)一小箱時(shí),當(dāng)天這款酸奶的利潤為隨機(jī)變量Y,求X和Y的分布列;
(2)從早餐店的收益角度和利用所學(xué)的知識(shí)作為決策依據(jù),該早餐店應(yīng)每天批發(fā)一大箱還是一小箱?(必須作出一種合理的選擇)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD-A1B1C1D1中,CD∥AB, AB⊥BC,AB=BC=2CD=2,側(cè)棱AA1⊥平面ABCD.且點(diǎn)M是AB1的中點(diǎn)
(1)證明:CM∥平面ADD1A1;
(2)求點(diǎn)M到平面ADD1A1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點(diǎn)P在正方體ABCD-A′B′C′D′的對(duì)角線BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小.
(2)求DP與平面AA′D′D所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,D,E,F分別是邊,,中點(diǎn),下列說法正確的是( )
A.
B.
C.若,則是在的投影向量
D.若點(diǎn)P是線段上的動(dòng)點(diǎn),且滿足,則的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,且,其對(duì)角線、交于點(diǎn), 、是棱、上的中點(diǎn).
(1)求證:面面;
(2)若面底面, , , ,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過點(diǎn)的直線與拋物線相交于兩點(diǎn),與拋物線的準(zhǔn)線相交于點(diǎn), ,則與的面積之比__________.
【答案】
【解析】
由題意可得拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為。
如圖,設(shè),過A,B分別向拋物線的準(zhǔn)線作垂線,垂足分別為E,N,則
,解得。
把代入拋物線,解得。
∴直線AB經(jīng)過點(diǎn)與點(diǎn),
故直線AB的方程為,代入拋物線方程解得。
∴。
在中, ,
∴
∴。答案:
點(diǎn)睛:
在解決與拋物線有關(guān)的問題時(shí),要注意拋物線的定義在解題中的應(yīng)用。拋物線定義有兩種用途:一是當(dāng)已知曲線是拋物線時(shí),拋物線上的點(diǎn)M滿足定義,它到準(zhǔn)線的距離為d,則|MF|=d,可解決有關(guān)距離、最值、弦長等問題;二是利用動(dòng)點(diǎn)滿足的幾何條件符合拋物線的定義,從而得到動(dòng)點(diǎn)的軌跡是拋物線.
【題型】填空題
【結(jié)束】
17
【題目】已知三個(gè)內(nèi)角所對(duì)的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com