已知約束條件數(shù)學(xué)公式若目標(biāo)函數(shù)z=x+ay(a≥0)恰好在點(diǎn)(2,2)處取得最大值,則a的取值范圍為


  1. A.
    0<a<數(shù)學(xué)公式
  2. B.
    a≥數(shù)學(xué)公式
  3. C.
    a>數(shù)學(xué)公式
  4. D.
    0<a<數(shù)學(xué)公式
C
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值的方法,利用直線斜率之間的關(guān)系,只需求出直線z=x+ay的斜率的取值范圍即可.
解答:解:畫出已知約束條件的可行域?yàn)椤鰽BC內(nèi)部(包括邊界),
如圖,易知當(dāng)a=0時(shí),不符合題意;
當(dāng)a>0時(shí),由目標(biāo)函數(shù)z=x+ay得y=-x+,
則由題意得-3=kAC<-<0,故a>
綜上所述,a>
故選C.
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.由于線性規(guī)劃的介入,借助于平面區(qū)域,可以研究函數(shù)的最值或最優(yōu)解;借助于平面區(qū)域特性,我們還可以優(yōu)化數(shù)學(xué)解題,借助于規(guī)劃思想,巧妙應(yīng)用平面區(qū)域,為我們的數(shù)學(xué)解題增添了活力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省溫州市蒼南縣巨人中學(xué)高一(下)第二次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知約束條件若目標(biāo)函數(shù)z=x+ay(a≥0)恰好在點(diǎn)(2,2)處取得最大值,則a的取值范圍為( )
A.0<a<
B.a(chǎn)≥
C.a(chǎn)>
D.0<a<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年天津市耀華中學(xué)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

已知約束條件若目標(biāo)函數(shù)z=x+ay(a≥0)恰好在點(diǎn)(2,2)處取得最大值,則a的取值范圍為( )
A.0<a<
B.a(chǎn)≥
C.a(chǎn)>
D.0<a<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市東城區(qū)示范校高三(下)3月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知約束條件若目標(biāo)函數(shù)z=x+ay(a≥0)恰好在點(diǎn)(2,2)處取得最大值,則a的取值范圍為( )
A.0<a<
B.a(chǎn)≥
C.a(chǎn)>
D.0<a<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考數(shù)學(xué)復(fù)習(xí):6.3 三元一次不等式(組)與簡(jiǎn)單的線性規(guī)劃問(wèn)題(2)(解析版) 題型:選擇題

已知約束條件若目標(biāo)函數(shù)z=x+ay(a≥0)恰好在點(diǎn)(2,2)處取得最大值,則a的取值范圍為( )
A.0<a<
B.a(chǎn)≥
C.a(chǎn)>
D.0<a<

查看答案和解析>>

同步練習(xí)冊(cè)答案