【題目】春節(jié)來(lái)臨,有農(nóng)民工兄弟A、B、C、D四人各自通過(guò)互聯(lián)網(wǎng)訂購(gòu)回家過(guò)年的火車票,若訂票成功即可獲得火車票,即他們獲得火車票與否互不影響.若A、B、C、D獲得火車票的概率分別是 ,其中p1>p3 , 又 成等比數(shù)列,且A、C兩人恰好有一人獲得火車票的概率是 .
(1)求p1 , p3的值;
(2)若C、D是一家人且兩人都獲得火車票才一起回家,否則兩人都不回家.設(shè)X表示A、B、C、D能夠回家過(guò)年的人數(shù),求X的分布列和期望EX.
【答案】
(1)解:∵A、C兩人恰好有一人獲得火車票的概率是 ,
∴
聯(lián)立方程組 ,
由p1>p3,解得
(2)解:由題意知X的可能取值為0,1,2,3,4,
∴X的分布列為:
X | 0 | 1 | 2 | 3 | 4 |
P |
|
|
|
|
|
【解析】(1)由A、C兩人恰好有一人獲得火車票的概率是 ,列出方程組,能求出p1,p3的值.(2)由題意知X的可能取值為0,1,2,3,4,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若樣本的平均數(shù)是,方差是,則對(duì)樣本,下列結(jié)論正確的是 ( )
A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25
C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分別為AE,AB的中點(diǎn).
(Ⅰ)證明:PQ∥平面ACD;
(Ⅱ)求AD與平面ABE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A為橢圓 =1(a>b>0)上的一個(gè)動(dòng)點(diǎn),弦AB,AC分別過(guò)左右焦點(diǎn)F1 , F2 , 且當(dāng)線段AF1的中點(diǎn)在y軸上時(shí),cos∠F1AF2= . (Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè) ,試判斷λ1+λ2是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且s6>s7>s5 , 給出下列五個(gè)命題:①d>0;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項(xiàng)為S11;⑤|a5|>|a7|.其中正確命題的個(gè)數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了得到函數(shù)y=cos2x的圖象,只要把函數(shù) 的圖象上所有的點(diǎn)( )
A.向右平行移動(dòng) 個(gè)單位長(zhǎng)度
B.向左平行移動(dòng) 個(gè)單位長(zhǎng)度
C.向右平行移動(dòng) 個(gè)單位長(zhǎng)度
D.向左平行移動(dòng) 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左,右焦點(diǎn)分別為F1 , F2 , 過(guò)F1任作一條與兩坐標(biāo)軸都不垂直的直線,與C交于A,B兩點(diǎn),且△ABF2的周長(zhǎng)為8.當(dāng)直線AB的斜率為 時(shí),AF2與x軸垂直. (I)求橢圓C的方程;
(Ⅱ)在x軸上是否存在定點(diǎn)M,總能使MF1平分∠AMB?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】城市發(fā)展面臨生活垃圾產(chǎn)生量逐年劇增的困擾,為了建設(shè)宜居城市,2017年1月,某市制定《生活垃圾分類和減量工作方案》,到2020年,生活垃圾無(wú)害化處理率達(dá)到100%.如圖是該市2011~2016年生活垃圾年產(chǎn)生量(單位:萬(wàn)噸)的柱狀圖;如表是2016年年初與年末對(duì)該市四個(gè)社區(qū)各隨機(jī)抽取1000人調(diào)查參與垃圾分類人數(shù)的統(tǒng)計(jì)表:
2016年初 | 2016年末 | |
社區(qū)A | 539 | 568 |
社區(qū)B | 543 | 585 |
社區(qū)C | 568 | 600 |
社區(qū)D | 496 | 513 |
注1:年份代碼1~6分別對(duì)應(yīng)年份2011~2016
注2:參與度= ×100%
參與度的年增加值=年末參與度﹣年初參與度
(1)由圖可看出,該市年垃圾生產(chǎn)量y與年份代碼t之間具有較強(qiáng)的線性相關(guān)關(guān)系,運(yùn)用最小二乘法可得回歸直線方程為 =14.8t+ ,預(yù)測(cè)2020年該年生活垃圾的產(chǎn)生量;
(2)已知2016年該市生活在垃圾無(wú)害化化年處理量為120萬(wàn)噸,且全市參與度每提高一個(gè)百分點(diǎn),都可使該市的生活垃圾無(wú)害化處理量增加6萬(wàn)噸,用樣本估計(jì)總體的思想解決以下問(wèn)題: ①由表的數(shù)據(jù)估計(jì)2016年該市參與度的年增加值,假設(shè)2017年該市參與度的年增加值與2016年大致相同,預(yù)測(cè)2017年全市生活垃圾無(wú)害化處理量;
②在2017年的基礎(chǔ)上,若2018年至2020年的參與度逐年增加5個(gè)百分點(diǎn),則到2020年該市能否實(shí)現(xiàn)生活垃圾無(wú)害化處理率達(dá)到100%的目標(biāo)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見(jiàn)》,某校計(jì)劃開(kāi)設(shè)八門研學(xué)旅行課程,并對(duì)全校學(xué)生的選課意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果如下.圖中,課程A,B,C,D,E為人文類課程,課程F,G,H為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡(jiǎn)稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?
(Ⅱ)某地舉辦自然科學(xué)營(yíng)活動(dòng),學(xué)校要求:參加活動(dòng)的學(xué)生只能是“組M”中選擇F課程或G課程的同學(xué),并且這些同學(xué)以自愿報(bào)名繳費(fèi)的方式參加活動(dòng).選擇F課程的學(xué)生中有x人參加科學(xué)營(yíng)活動(dòng),每人需繳納2000元,選擇G課程的學(xué)生中有y人參加該活動(dòng),每人需繳納1000元.記選擇F課程和G課程的學(xué)生自愿報(bào)名人數(shù)的情況為(x,y),參加活動(dòng)的學(xué)生繳納費(fèi)用總和為S元.
(。┊(dāng)S=4000時(shí),寫(xiě)出(x,y)的所有可能取值;
(ⅱ)若選擇G課程的同學(xué)都參加科學(xué)營(yíng)活動(dòng),求S>4500元的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com